Software tools for GLC studies

Akiya Miyamoto
KEK
20 April, 2004

Representing ACFA-Sim Group
http://acfahep.kek.jp/subg/sim/
Contents

- JSF: the Flow Controller
- Jupiter (Geant4 Full Detector Simulator)
- Summary
List of software tools

- **LCLIB** - Quick Simulator and old fortran utilities
- **JLCSIM** - Geant3 based full detector simulator
- **PHYSSIM** - Event generators based on HELAS and Analysis packages consists of Jet Clustering and four vector manipulation
- **JSF** - Root based software study framework
- **Jupiter** - Geant4 based full detector simulator
- **Satellites** - Analysis modules, in preparation

General information from ACFA-Sim Home Page

Packages are maintained on CVS, available at http://jlccvs.kek.jp/
JSF: the Flow Controller

- Based on ROOT: C++
- Modular: Unified Framework for
 - Event generation
 - Detector Simulation
 - Event Reconstruction
 - Physics Analysis
 - Beam test
- Object I/O
 - Each module’s data in a ROOT tree
 - User data (hits, ntuple, parameters) also in the same tree
- Unified User Interface for Batch and Interactive
 - GUI/CUI (user definable command line args. and default vals.)
 - Simple built-in event display
Packages provided with JSF

- JSF includes the following sub-packages
 - Generator interface to Pythia, Physsim, Grace
 - Hadronizer (Pythia, Herwig)
 - QuickSim (C++ wrapper for LCLIB)
 - C++ version of Bases/Spring
 - GUI, Event Display, ZVTOP, JETNET, Jupiter
 -
Les Houche Interface in JSF

- Les Houches 2001 standard for the interface of a parton generator and a shower generator was implemented in JSF.

 - A parton generator outputs parton information a la Les Houches format in a ASCII file.
 - Interfaces in JSF read it and does parton shower using Pythia (Herwig in Future)

- Example:
 - **LCGrace**
 - LC version of the GRACE event generator, including all diagrams for a given process.
 - Parton four momenta generated by SPRING package are saved with Les Houche format in an ASCII file.
 - ~30 processes have been prepared such as
 \[
 e^+e^- \rightarrow W\bar{W}H, \bar{t}tH, 4f, 6f, 4f + H \quad (f = \nu, \ell, q)
 \]
Sample events

\[e^+ e^- \rightarrow t \bar{t} H \]

\[e^+ e^- \rightarrow \nu \bar{\nu} HH \]
Jupiter: Geant4 based Full Detector Simulator

Features:

- Modular structure for easy update, install/uninstall of sub-detectors
- Powerful base classes that provide unified interface to
 - facilitate easy (un)installation of components by methods such as InstallIn, Assemble, Cabling
 - Help implementation of detailed hierarchical structures. This helps to save memory size.
 - Minimize user-written source code by
 - Automatic naming system & material management
 - B-field compositions for accelerators

Input: HEPEVT, CAIN (ASCII) or generators in JSF.

Output
- Output class allows external methods. Using this mechanism, it can output ASCII flat file and JSF/ROOT file.

Core developer: K. Hoshina and K. Fujii
Standard Geometry of Jupiter

Super Conducting Solenoid (SOL)
Calorimeter (HCAL)
Calorimeter (ECAL)
Central Tracker (CDC)
Intermediate Tracker (IT)
Vertex Detector (VTX)
Detector geometries in Jupiter

CDC
Individual drift cells and wires
Axial and stereo geometry

VTX detector

VTX sensor

Geometry parameters such as #layers, #pixels,.... controled by a ParameterList class for easy modification

0cm 45cm 155cm

A.Miyamoto@LCWS2004
Beam Delivery System
for Beam BG Study

Detector Model
Model d)
L*=4.3 m
3T (Solenoid)

QC1
QC2
VTX

Crossing 3mrad

CDC
QC1
VTX

T.Aso

A.Miyamoto@LCWS2004
Sample events by Jupiter

\[e^+ e^- \rightarrow Z^0 H^0 \text{ event} \]
\[\sqrt{s} = 350\text{GeV} \]

Beam Background Simulated By Jupiter

Event source : CAIN

A.Miyamoto@LCWS2004
Summary

- JSF framework has been developed based on ROOT. Study tools and interface to them are provided with JSF. It has been used for physics and detector studies.

- Jupiter framework has been developed based on Geant4.
 - Basic detector components and beam delivery system has been implemented. It has been used for studies of detector performance and beam background.

- Future plan for Jupiter includes,
 - Make them LCIO-compliant
 - XML-based description of a detector geometry
 - Improve geometry outside the tracking volume.
 -