Constrained Markovian MC for the initial state PDFs

LCWS 2004

S. Jadach

and

M. Skrzypek

stanislaw.jadach@ifj.edu.pl

HNINP-PAS, Cracow, Poland
The long standing problem

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs

Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR).

For ISR the Backward Markovian of Sjostrand (Phys.Lett. 157B, 1985) is a widely adopted remedy.

Backward Markovian does not solve evolution eqs. It merely exploits their solutions coming from the external non-MC methods.

Is it possible to invent an efficient MC algorithm for constrained Markovian based on internal MC solutions of the evolution eqs?
The long standing problem

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs

- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)
The long standing problem

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)

- For ISR the *Backward Markovian* of Sjostrand (Phys. Lett. 157B, 1985) is a widely adopted remedy.
The long standing problem

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)
- For ISR the Backward Markovian of Sjostrand (Phys.Lett. 157B, 1985) is a widely adopted remedy.

- **Backward Markovian** does not solve evolution eqs. It merely exploits their solutions coming from the *external* non-MC methods
The long standing problem

- Markovian MC implementing the QCD/QED evolution equations is basic ingredient in all parton shower type MCs
- Unconstrained Markovian, with evolution kernels from perturbative QED/QED, can only be used for FSR (inefficient for ISR)
- For ISR the *Backward Markovian* of Sjostrand (Phys.Lett. 157B, 1985) is a widely adopted remedy.
- *Backward Markovian* does not solve evolution eqs. It merely exploits their solutions coming from the external non-MC methods
- **Is it possible to invent an efficient MC algorithm for constrained Markovian based on *internal* MC solutions of the evolution eqs?**
Solution are coming

- We have found a class of solutions of the above long-standing problem
Solution are comming

- We have found a class of solutions of the above long-standing problem

- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%, Acta Phys. Polon. B35 (2004) 745
Solution are comming

- We have found a class of solutions of the above long-standing problem
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum1.6 to within 0.2%, Acta Phys.Polon. B35 (2004) 745

- Recently, 1-st prototype of the efficient constrained Markovian MC (solution IIB) prototyped. It agrees with the Markovian EvolMC to within 0.2%
Solution are comming

- We have found a class of solutions of the above long-standing problem.
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%.
- Recently, 1-st prototype of the efficient constrained Markovian MC (solution IIB) prototyped.
 It agrees with the Markovian EvolMC to within 0.2%.

- Next step: Prototyping, testing and documenting the entire family of constrained MC algorithms that we see...
Solution are comming

- We have found a class of solutions of the above long-standing problem.
- Introductory exercise: Markovian MC EvolMC was found to agree with QCDnum16 to within 0.2%,
- Recently, 1-st prototype of the efficient constrained Markovian MC
 (solution HIB) prototyped.
 It agrees with the Markovian EvolMC to within 0.2%
- Next step: Prototyping, testing and documenting the entire family of constrained MC algorithms that we see...
- Next-next step: looking for applications in the full scale (4-momenta) parton shower MCs.
 Obvious candidate processes: ISR at ELCs, W/Z at LHC and DIS.
Solution are comming

- We have found a class of solutions of the above long-standing problem.
- Introductory exercise: Markovian MC $E_{vol}MC$ was found to agree with QCD$_{num16}$ to within 0.2%,
- Recently, 1-st prototype of the efficient constrained Markovian MC (solution IIB) prototyped.
 It agrees with the Markovian $E_{vol}MC$ to within 0.2%.
- Next step: Prototyping, testing and documenting the entire family of constrained MC algorithms that we see...
- Next-next step: looking for applications in the full scale (4-momenta) parton shower MCs. Obvious candidate processes: ISR at ELCs, W/Z at LHC and DIS.
Solutions class I and II

\[\int dx_0 \, D(x_0) \int \prod_i dz_i P(z_i) \, H(sx_0 \prod_i z_i) \]

Solutions class I (more difficult because of \(\delta(\cdots)\)):
\[\int dx \, dx_0 \, D(x_0) \, H(sx) \int \prod_i dz_i P(z_i) \delta(x - x_0 \prod_i z_i) \]

Solutions class II (only for QCD) NEW!:
\[\int dx \, H(sx) \int \prod_i \frac{dz_i}{z_i} P(z_i) \, D(x / \prod_i z_i) \Theta(\prod z_i - x) \]
Replace $D(x_0) \rightarrow 1/x_0 = x \prod \frac{1}{z_i}$. Compensated by MC weight.

Must generate $P(z_i) = 2C_A \left(\frac{1}{z_i} + \frac{1}{1-z_i} \right)$
with the constraint $\prod_i z_i \geq x$. Not so trivial!
Solution by the multibranching method:

$\frac{1}{z} + \frac{1}{1-z} \quad = \quad \frac{1}{1-z} \quad + \quad \frac{1}{z}$
Multibranching in IIB

Using

\[\frac{1}{z} + \frac{1}{1-z} \]

Leads to sum over branches:

\[\sum \]

Contributions 1 = \(z \) and 1 = \((1 - z) \) are combined and resummed separately.

Worst-case scenario (pure gluon bremsstrahlung) is now prototyped and tested.

Constrained Markovian MC for the initial state PDFs – p.6/8
Multibranching in IIB

Using

\[\frac{1}{z} + \frac{1}{1-z} \]

Leads to sum over branches:

\[\sum_{z} \Theta \left(\frac{x}{x_0} - \prod z_i \right) \rightarrow \prod \Theta \left(\frac{x}{x_0} - z_i \right) \]

Contributions \(1/z\) and \((1 - z)\) are combined and resummed separately.
Multibranching in IIB

Using

\[\frac{1}{z} + \frac{1}{1-z} \]

Leads to sum over branches:

\[\sum_{Z} \Theta\left(\frac{x}{x_0} - \prod z_i \right) \rightarrow \prod \Theta\left(\frac{x}{x_0} - z_i \right) \]

Contributions \(1/z\) and \(1/(1-z)\) are combined and resummed separately.

Worst-case scenario (pure gluon bremsstrahlung) is now prototyped and tested.
Testing prototype IIB

Comparison of IIB solution with the Markovian MC EvolMC for pure gluonstrahlung. Two solutions and the ratio (lower plot).

Agreement to within 0.2%
Short term prospects

- More testing of IIB.
- Numerical test of solutions class I (several solutions found, under tests)
- Implementing transitions $Q \rightarrow G$ and $G \rightarrow Q$ (at least 2 methods found)
- Adding NLL corrections (looks rather trivial)

Most important:
NEW AVENUES are opened in the construction of the ISR PARTON SHOWER type MCs