Explicit CP-violation in the Higgs Sector @ Gamma Gamma Colliders (gC) & Other Future Colliders

Prof. Mayda M. Velasco

Northwestern Univ. April 20, 2004

In collaboration with Matthew D. Wood & Sven Heinemeyer

We should investigate the Complex MSSM... because:

- Complex parameters are in principle allowed
- In combination with certain range of squark masses, CP violation in Higgs could give possible source of Cosmological Baryogenesis

Done by adding 2 extra phases in the MSSM:

- the gaugino mass and
- trilinear coupling
 - This is in addition to the already existing phase in the CKM matrix

Complex MSSM: we have MASS and CP Eigenstates

"In zero momentum approximation"

- CP Eigenstates
 - ✓ h, H CP-EVEN
 - A CP-ODD
- Mass Eigenstates $M_{h_1} < M_{h_2} < M_{h_3}$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{pmatrix} \begin{pmatrix} h \\ H \\ A \end{pmatrix} \equiv U \begin{pmatrix} h \\ H \\ A \end{pmatrix}$$

Today... Only focus on h_1 (mass < 135 GeV)

- Masses and decay width for h₁, h₂ & h₃ obtained from:
 - CPSuperH (CpsH)
 - hep-ph/0307377
 - FeynHigg
 - hep-ph/0108059, hep-ph/0212037
- Note: For some parameters
 - $-h_{2,3}$ to $h_1 h_1$ and $(M_{h_1} < 100 \text{ GeV})$ where h--> bb, $\tau\tau$
 - This could be the dominant mode
 - Good discovery potential at γγ already discussed by Gunion's talk in the context of the NMSSM...

Focus on h₁ production & properties at gC'

All comparisons made with respect to SM expectations

Machine	$E_{e^+e^-}(\text{GeV})$	$M_{h_{SM}}({ m GeV})$	Yield/year	Ref.
CLICHE	150	115	22.5k	hep-ex/0110056
CLICHE	160	120	23.6k	Correct for $\Gamma_{\gamma\gamma}$
TESLA	160	120	21.0k	hep-ex/0101056
NLC	160	120	11.0k	hep-ex/0110055

<u>CLICHé as an example</u>

Consider gC' based on CLICHé parameters for $h_{SM} = 115 \text{ GeV}$

→ The h_{SM} to bb decay is the most important in this mass range

Well defined J=0,2 final states, when starting with *circularly* ($\lambda=\pm 1$) polarized γ 's \Rightarrow important for controlling backgrounds, $\gamma\gamma\to f\bar{f}$ is a J=1 state.

signal = two b-quark jets background = continuum b & c production

Expectation for SM h @ 120 GeV

@ Gamma Gamma in one year

Measurement	Precision
$\Gamma_{\gamma\gamma} imes Br(h o bb)$	2%
$\Gamma_{\gamma\gamma} imes Br(h o WW)$	5%
$\Gamma_{\gamma\gamma} imes Br(h o\gamma\gamma)$	8%

@ LC at $500 \text{ fb}^{-1} \text{ sqrt(s)} = 350 \text{ GeV}$

Decay mode:	bb	WW^*	ττ	С	\bar{c}	gg	$\gamma\gamma$
Ref. [7]	2.4%	5.1%	5%	8.5	5% 5	.5%	19%
	g_{kk}^3	92mm	\mathbf{g}^{2}	g_{hst}^2	g_{krr}^2	g_{hgg}^2	g_{kit}^2
experimental uncertainty	4.4%	2.4%	^S ZZh 2.4%	7.4%	6.6%	7.4%	10%

 $\Gamma(Z)/\Gamma(WW)$ $\Gamma(\gamma)/\Gamma(W)$ $\Gamma(\tau)/\Gamma(W)$ $\Gamma(\tau)/\Gamma(\gamma)$ $\Gamma(\gamma)/\Gamma(W)$

Comparison of CPX (maximizes the CP effects)

$\tan \beta$		$ \mu $		$M_{H^\pm}^{ m pole}$		$M_t^{ m pole}$	
5		→ 2000.0		→ 300.0		175	
$m_{ ilde{Q}_3}$	$m_{ ilde{U}_3}$	$m_{ ilde{D}_3}$	$m_{ ilde{L}_3}$	$m_{ ilde{E}_3}$	$ A_t $	$ A_b $	$ A_{\tau} $
500.0	500.0	500.0	500.0	500.0	1000.0	1000.0	1000.0
$m_{ ilde{Q}_2}$	$m_{ ilde{U}_2}$	$m_{ ilde{D}_2}$	$m_{ ilde{L}_2}$	$m_{ ilde{E}_2}$	$ M_1 $	$ M_2 $	$ M_3 $
500.0	500.0	500.0	500.0	500.0	50.0	100.0	1000.0

CPX: Some of the branching ratios to be used

100

150

-150 -100

• This is in part a reflection of the mass effects

• µ variation could be the cause of the quick drop at large phases

Comparison of CpsH & FeynHiggs (M. Wood, S. Heinemeyer, M.Velasco)

• CPSuperH:

- Full complex phase dependence @ $o(\alpha_s, \alpha_t)$
- -Approx for $o(\alpha_{t}^{2})$
- Approx @ 1Loop
- FeynHiggs:
 - Approx for phase dependence @ $o(\alpha_s, \alpha_t)$
 - Full $o(\alpha^2)$ calculation
 - Full 1Loop calculation

--->DIFFERENCES.... under investigation by the authors!

Changes in rate for CPX-Scenario @ fix m_h

Fix Masses: Overall enhacement in the full range of phases

& tan \(\beta \)

Recall:
In the SM
we expect
a 2%
measument
with a year.

Recall LHC and LC capabilities for h_{SM}

LHC signals

- Suppresion in LHC anti-correlated with enhacement observed in $\gamma\gamma$
- The tt channel guarantees observation of this Higgs

LC signals

• M_{H+} = 300 GeV, therefore g_{zzh} not affected much as for lower values M_{H+}

Comparing all machines

Conclusions...

gC, e+e- and LHC colliders are all complementary & highly desirable in the presence of Complex phases in the MSSM:

- These phases causes explicit CP violation in the Higgs sector that could explain baryogenesis
- gC and e+e- coll. both will see an enhancement in the scenarios study so far, the difference being that gC has more sensitivity due to the "Loop" nature of the production mechanism
- gC and LHC both see a bigger effect as the absolute value of the phases increases... but the have opposite behaviour (enhancement @ gC, suppression at LHC)