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MMAA determination from determination from the the 
Higgs branching ratios Higgs branching ratios 

with full parametric uncertaintieswith full parametric uncertainties
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Introduction: MSSM at the Tree LevelIntroduction: MSSM at the Tree Level
¾ Two complex scalar doublets in MSSM ⇒ five physical states: 

h, H, A and H±

¾ The Higgs sector of the MSSM is fully determined at the 
lowest order by only two parameters: MA and tanβ = v2/v1. Both 
can be determined if the heavy Higgs bosons are observed

¾ The decoupling limit corresponds to MA >> MZ ⇒
the properties of the light CP-even Higgs boson approach 
those of SM Higgs boson

¾ The phenomenology of the light CP-even Higgs boson can be 
predicted if experimental results on the heavy Higgs are 
available
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Introduction Introduction –– Cont.Cont.
¾ The tree-level upper bound on 

the mass of the lightest Higgs 
boson is mh < mZ

¾ In real life we need to take into 
account large radiative
corrections in particular from 
top/stop sector (sbottom for 
large tanβ also) that can push 
mass of the light Higgs boson up 
by about 50%

¾ Observed deviations in the 
Higgs sector can no longer be 
attributed to a single 
parameter

Tree level

30

3
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Is it a SM or an MSSM Higgs Boson?Is it a SM or an MSSM Higgs Boson?
¾ After LHC we may find 

several Higgs bosons…

¾ or we may find just one

¾ If we find one can we say if 
it is SM or MSSM?

¾ If yes, can we constraint 
MA?

¾ If we see several, what can 
we say about  a specific 
MSSM model?

Α
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SM SM vsvs MSSM Higgs CouplingsMSSM Higgs Couplings
¾ Already at the tree-level couplings of the Higgs boson are 

changed compared to the SM Higgs

¾ Radiative corrections to the CP-even Higgs mixing angle α
can have significant effect on Higgs boson couplings

0-iγ5cotβ-iγ5tanβA

cos(β-α)sinα/sinβcosα/cosβH

sin(β-α)cosα/sinβ-sinα/cosβh

Gauge bosonsUp type fermionsDown type 
fermions f(α,β)

),( βα⋅= fgg SMMSSM
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Tree LevelTree Level
¾ Simple approach – tree level:
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E. Gross; 

http://eilam.weizmann.ac.il/mada/Talks/Orsay.pdf

http://eilam.weizmann.ac.il/mada/Talks/Krakow.ppt
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A Toy 1A Toy 1--loop Modelloop Model
¾ Simple approach – with ε-radiative corrections:

MA >> MZ ⇒ β-α → π/2 – η, with small η:

then
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No mixing; tanβ = 5; mh = 120 GeV; 
error = 2.5%



27/04/2004 L. Živković 8

SPS 1 ScenarioSPS 1 Scenario
¾ Consider:

a) SPS 1a scenario:

b) SPS 1b scenario:

+300400200

µtanβA0m1/2m0

+10-100250100

µtanβA0m1/2m0

Large value of tanβ; MA ≈ 550 GeV; stop and 
sbottom 600-800 GeV

Both h and A can be observed!

MA ≥ 400 GeV; 

Just h can be observed!
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Indirect constrains on MIndirect constrains on MAA

¾ Several analyses have been performed:
– D. Asner et al., Eur. Phys. Jour. C 28 (2003) 27, hep-ex/0111056;
– J. Guasch, W. Hollik and S. Peñaranda, Phys. Lett. B 515 (2001) 

367, hep-ph/0106027;
– M. Carena, H. Haber, H. Logan and S. Mrenna, Phys. Rev. D 65 

(2002) 055005, E:ibid D 65 (2002) 099902, arXiv:hep-
ph/0106116.

¾ They all kept fixed all parameters except one under 
investigation (i.e. MA) assuming that SUSY parameters 
enter without any experimental or theoretical uncertainty 
⇒ here we take into account all experimental and 
theoretical uncertainties
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Indirect constrains on MIndirect constrains on MAA
¾ Model is SPS1a with following errors assumed:

¾ We compare theoretical prediction of

with its prospective experimental measurements
¾ Even though the experimental error of the two BR’s is larger

than that of the individual ones, it has stronger sensitivity

10%0.5 GeV2 GeV6.5 GeV6.2 GeV5.7 GeV

tanβ∆mh∆mst1∆mgluino∆msb2∆msb1

We assume that we can measure 
lighter stop at LC, m ~ 400 GeV

From LC for 
tanβ = 10

Precise measurement of mh with an error 
from theory included
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Theoretical prediction for 
r as a function of MA

All relevant SUSY parameters 
are varied within the 3σ ranges 
of their experimental errors

If we assume different 
stop masses we would get 
different values of r for 
lower MA

590 < Mst2 < 630 – SPS1a

1100 < Mst2 < 2000 – unconstrained 
MSSM
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Indirect constrains on MIndirect constrains on MAA

¾ Lighter stop is accessible ⇒ we can expect that we can 
determine mixing angle θst with sufficient accuracy so we 
might be able to predict the mass of the heavier stop, 
distinguishing between the two bands

¾ For the experimental accuracy of r we consider:
– 4%    - from the first phase of LC@√s = 500 GeV
– 1.5%  - from the LC@√s = 1 TeV
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Indirect constrains on MIndirect constrains on MAA
¾ Divide the mass spectrum into 5 GeV slices. 
¾ Calculate the rmean. 
¾ Calculate the standard deviation from the mean value. 

It contains 132 points.

Mass point mA = 502.5 GeV is a set of points mA∈ [500,505)

rmean

1σ
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Indirect constrains on MIndirect constrains on MAA

¾ Add to in quadrature the error in the measurement of r, i.e. 4%. 

1σ

rmean
1σ

rmean

%41 ⊕σ
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Indirect constrains on MIndirect constrains on MAA
¾ The resulting bands of 1σ and
¾ Pick the mass point. Go up and down in r till you hit the band boundary. 

Then find the mass errors (vertical right and left).  Those will be ∆m+

and ∆m-

∆m+
∆m-

%41 ⊕σ
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Indirect constrains on MIndirect constrains on MAA
¾ We can measure MA with a precision 20% (30%) up to a MA = 600 

(800) GeV with an accuracy of 1.5% on r!
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Indirect constrains on MIndirect constrains on MAA
From here, we can read everything ☺
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Why not bb/Why not bb/ττττ??

No sensitivity in this 
scenario

Another Scenario

Distinguishing Higgs models in H→bb/H→ττ; Guasch, 
Hollik, Peñaranda; hep-ph/0106027
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What about bb, WW or What about bb, WW or ττττ alone?alone?
¾ Again, we can get the best sensitivity with the ratio
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Determination of ADetermination of At t if A is observedif A is observed

¾ We assume SPS1b scenario and following experimental 
information from LHC:
– ∆MA = 10% (MA ~ 550 GeV)
– tanβ > 15

• Determination of tanβ from the comparison of the measured cross-
section (bbH/A, H/A →ττ,µµ) with the theoretical prediction; large 
errors from QCD uncertainties and experimental errors on SUSY 
parameters. 

– ∆mstop, ∆msbottom = 5%
• Measured at LHC, but outside of the kinematic limit of the LC

– ∆mh = 0.5 GeV
• At the LC the mass of the light Higgs can be measured with an accuracy 

of 50 MeV, but we assumed 0.5 GeV in order to account theoretical 
uncertaities
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Determination of ADetermination of At t if A is observedif A is observed
¾ The experimental information from 

the heavy Higgs and scalar quark 
sectors ⇒ prediction on the 
branching ratios of the light Higgs 
⇒ consistency test of the MSSM

¾ Yellow full parameter space of the 
MSSM allowed

¾ Light blue – ∆MA = 10%, ∆mst = 5%, 
tanβ > 15

¾ Dark blue – additional ∆mh = 0.5 GeV

¾ Predictions compared with the 
prospective experimental accuracies 
at the LC
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Determination of ADetermination of At t if A is observedif A is observed

¾ We investigate BR(h→WW) as a 
function of a trilinear coupling 
At

¾ If we can measure precisely mh, 
we can determine the sign of At

¾ Precise measurement of mt is 
crucial
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ConclusionsConclusions
¾ If we find just one Higgs boson at LHC, precision 

measurement at LC would allow to tell its nature
(SM or MSSM)

¾ We could put constraints on the mass of the CP-odd Higgs 
boson 
precision would be 20 (30)% for mA equal to 600 (800) GeV

¾ If we find several Higgs bosons at LHC, precision 
measurement at LC would allow us to shed some light on 
the possible model
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