Detector Technologies for LC

Hitoshi Yamamoto Tohoku University

LCWS, Paris, April 19, 2004

- 1. Requirements
- 2. Vertexing
- 3. Central tracking
- 4. Calorimeters
- 5. Other systems

Detector performance goals (Int'l R&D review)

- central tracking: $\sigma(\frac{1}{p_t}) \le 5 \times 10^{-5} (\mathrm{GeV/c})^{-1}$ ($\sim 1/10$ LHC. 1/6 material in tracking volume.)
- ullet Jet energy: $rac{\sigma_E}{E} \simeq 0.30 rac{1}{\sqrt{E({
 m GeV})}}$ (1/200 calorimeter granularity w.r.t. LHC)
- ullet vertexing: $\sigma_{r\phi,z}(ip) \leq 5\,\mu\mathrm{m} \oplus rac{10\,\mu\mathrm{m}\,\mathrm{GeV/c}}{p\sin^{3/2} heta}$, (1/5 r_{beampipe} , 1/30 pixel size, 1/30 thin w.r.t LHC)

Exploits the clean environments of LC.

Not a luxuary, but needed for LC to do its physics.

e.g: The Higgs tagging mode

$$e^+e^- o ZH, \quad Z o \ell^+\ell^-$$

$$rac{\sigma_p}{p^2} \sim 5 imes 10^{-5}$$
 is 'necessay'.

e.g: Separation of WW and ZZ

$$e^+e^-
ightarrow
uar{
u}W^+W^-,
uar{
u}ZZ\,, \quad W,Z
ightarrow 2{
m jets}$$

$$rac{\sigma_E}{E} = rac{0.6}{\sqrt{E}}$$

$$rac{\sigma_E}{E} = rac{0.3}{\sqrt{E}}$$

$$rac{\sigma_E}{E} \sim rac{0.3}{\sqrt{E}}$$
 is 'needed'.

Beam Structures

	warm (GLC/NLC)	cold (Tesla)
#bunch/train	192	2820
#train/s	150/120 Hz	5 Hz
bunch sp.	1.4 ns	337 ns
train length	269 ns	950 μ s
gap/train	6.6 ms	199 ms

Assuming the same luminosity for warm and cold,

• Luminosity per train: warm/cold $\sim 5/150 = 1/30$

If beam background \propto luminosity (\sim expected),

- Background per train(warm)
 - \sim Background in 950/30=30 μ s(cold)

Beam Backgrounds/train Hitting Detctor (warm) (T. Barklow)

e pairs: 9Ktrks 'hadrons': 50trks,80GeV

 μ pairs: 20trks,60GeV $\gamma\gamma$ hadrons: 100trks,450GeV

- Overlay of these $(+\alpha)$ is what we have after 1 train passing.
- Hits in vertexing are dominated by e pairs.
- Trks in central tracker dominated by $\gamma\gamma$ events.
- Physics event (if any)
 would be on top of it.
- Occupancy (w/o time) needs to be manageable.
- bunch id., time stamp highly desirable. (trkers and cals, esp. fwd regions)

A 'typical' STAR event (H. Wieman)

1. Vertex Detector

Occupancy → pixel devices needed.

- Pixel size $\sim 20 \times 20 \mu \text{m}^2$.
- Occuancy $\sim 0.3\%$ for track matching.
- One should be able to read it out (non-trivial, as it turns out).

Candidates:

- CCD (Charge-Coupled Device)
- HAPS (Hybrid Pixel Sensors)
- MAPS (Monolithic Active Pixel Sensor), FAPS (Flexible -), Small-pixel MAPS $(5 \times 5 \mu \text{m}^2)$
- DEPFET (DEPleted Feild-Effect Transistor)
 SOI (Silicon On Insulator)
- ISIS (Image Sensor with In-situ Storage)

CCD

- LCFI (LC Flavour Identification) collaboration:
 UK (Bristol, Glasgow, Lancaster, Liverpool, Oxford, RAL)
- US collaboration (Oregon, Yale, SLAC)
- Japanese collaboration (KEK, Niigata, Tohoku, Toyama)

LCFI CCD (gas-cooled)

- proven performance at SLD
- Good spacial resolution ($< 5 \mu m$)
- slow readout
- modest radhardness
- needs to be cooled(?)

CCD for Warm Machine

- Integrate signal over one train Expected occupancy $\sim 0.3\%$ (OK).
- Shift out during the train gap (7ms), after RF pickups have died down.
 - <R&D's on-going>
- Conventional serial readout too slow.
 → Multi-port readout.
- e.g. 50 ports for $2 \times 10 \text{cm}^2$ -area $(20 \mu \text{m})^2$ -pixel CCD to be readout in 5ms (20 MHz).
- Thinned sensor ($\sim 50 \mu m$).
- Mechanical support.
- Room temperature operation.
- Radiation hardness (acceptable).

Electron irradiations (150 MeV e beam, SR90)

CTI (Charge transfer inefficiency) vs temperature

- 150MeV electrons $2\sim 3$ times more damaging than SR90.
- CTI imporves at higher temperature.
 Fat-zero charge injection.

CCD for Cold Machine

- Need to read out every $50\mu s$ (20 times) during a train for $\sim 0.5\%$ occupancy.
- $\bullet \rightarrow 50$ MHz collum-parallel readout (CPCCD, 5cm-long).
- First prototype made and working.
- Clock feedthrough for > 16 MHz.
- Charge collection ~ 100 ns.
 - \rightarrow at 50 MHz, a signal charge is spread over several buckets.
 - → Fully-depleted CCD.
 - → Charge distribution study.
 Or, need to hold clock during charge collection.
- But very nice for warm machine.
 (proof of solution)

LCFI CPCCD (exists!)

HAPS (Hybrid Active Pixel Sensors)

(CERN, Helsinki, INFN, Krakow, Purdue, Warsow)

A sensor made of high-registivity silicon bump-bonded to readout chip(s) fabricated by a commercial process. (a la LHC pixel sensors)

R&D items

- material reduction
- smaller pitch (typ. $50x400 \mu m^2$ too big)
- capacitively-coupled readout to reduce #channel
 Works reasonably well.

MAPS (Monolithic active pixel sensors)

(Strasbourg, RAL, IRES, LEPSI → MAPS collaboration)

- Readout/sensor on one chip.
- CMOS image sensor technology (commercial process).
- Pixel size ∼CCD.
- (cold) Read out every 50μ s. Charge sharing OK (not coninuously shifted at high rate)

R&D items

- large-area sensor (3.5 cm² MIMOSA-5 tested OK)
- fast readout (50 MHz possible)
- thinning (120 μ m tested OK MIMOSA-5)
- CP, CDS and fast enough....
 (column-parallel, correlated double sampling)

MIMOSA Chips

V.	MIMOSA-4	MIMOSA-5	MIMOSA-6
year	2001	2001	2002
tech.	AMS $0.35 \mu \mathrm{m}$	AMS $0.6 \mu \mathrm{m}$	MIETEC $0.35 \mu \mathrm{m}$
epi.	$0 \mu {\sf m}$	14 μ m	4.2 μ m
pitch	$(20 \mu \mathrm{m})^2$	$($ 17 μ m $)^2$	$(28\mu\mathrm{m})^2$
array size	64^2	\sim 1000 2	64^2
readout BW	40M Hz	40 MHz	30 MHz
feature	no-dope subs.	$(1.75 \text{ cm})^2$	CP, CDS

- ullet $\sigma_{
 m sp}=1.5(2.2)\mu{
 m m}$ for 14(4) $\mu{
 m m}$ epi.
- 50 μm readout needs to be demonstrated. Currently, CDS takes time, and read out transversely.
- Rad-hardness acceptable.

MIMOSA Radiation Hardness

5% drop in charge at 1.5E12 n/cm²
Acceptable for linear collider.

MIMOSA-6

CP (Column-parallel readout, 128ch/line) CDS (Correlated double sampling)

Pixel electronics

FAPS (Flexible APS) (RAL)

Extension of MIMOSA-6 CDS (applicable also to HAPS)

Pixel electronics

- 10 storage capacitors/pixel.20 should be possible.20 frames / train (cold)
- Useful for GLC/NLC also (if bkg is too large)

ISIS (Image Sensor with In-situ Storage) (RAL)

- 20 burried-channel storages/pixel.
- Each storage stores $50\mu s$ time slice.
- Immune to RF pickup.
- Similar device commercially exist.
 Ultra high-speed camera:
 (up-to 1Mfps)
- Modification for LC is manageable.

2. Central Tracker

Two basic types:

Gaseous

large, many samplings/trk dE/dx π/K separation promissing.

- Jet chamber
- TPC

Silicon

small, \sim 5 samplings/trk No dE/dx π/K separation. (may be useful for new long-life heavy particles)

Jet Chamber

(Hiroshima, KEK, Kinki, Kogakuin, MSU, Nagoya, Saga, Tsukuba, TUAT)

- Sag of 4.6m-long wires under control.
- $\sigma_{\rm hit} = 90 \mu \rm m$.
- 2-trk separation 2mm.
- Time stamp: $\sigma_t = 2$ ns.
- $\sigma(1/p) < 10^{-4}$.

Jet chamberis a viable option for the warm machine with B=3T.

- Neutron: 2khits/train.
- Positive ion problem for the cold technology

Needs further R&D for cold, or for B>3T.

 CO_2 , isobutane (90/10)

sense : W D= 30μ m

field : Al D=150 μ m

TPC

LC-TPC: Aachen, DESY/Hamburg, Karlsruhe, Krakow, MPI-Munich, NIKHEF, Novosibirsk, Orsay/Sacley, Rostok, St. Petersburg, Carleton/Montreal/Victoria, LBNL, MIT, Chicago/Purdue/3M, BNL, Temple/Wayne St, Yale,

+ KEK

(Pros): Works at high B field (>3 T) Good 2-trk resolution, dE/dx, No thick endplates.

(Cons): probably needs new charge readout system.

Bunch identification.

TPC readout devices

- Conventional: MWPC + pads.
 Positive ion feedback.
 Resolution limited by the MWPC response.
- MPGD's (Micro Pattern Gas Detectors)
 - GEM (Gas Electron Multiplier)
 - MicroMEGAS (Micro Mesh GAS detector)

Gas Electron Multiplier – GEM (F. Sauli 1996)

- 50 µm capton foil, double sided copper coated
- ·75 µm holes, 140 µm pitch
- •GEM voltages up to 500 V yield 104 gas amplification

Stefan Roth, Development of a TPC for the future Linear Collider - HEP 2003 Aachen

Micromegas (Y. Giomataris 1996)

- asymmetric parallel plate chamber with micromesh
- saturation of Townsend coefficient mild dependence of amplification on gap variations
- ·ion feedback suppression

50 µm pitch

Stefan Roth, Development of a TPC for the future Linear Collider - HEP 2003 Aachen

e.g. MicroMEGAS-TPC

- LBNL, Berkley, LAL Orsay,
 DAPNIA Saclay.
- 50cm-drft, 1000 channels.
- Tested up to 2T at Saclay (15cm-drft version)
 No gain drop with Fe55.

MicroMEGAS-TPC up to 2T

Diffusion vs drift time

TPC R&D Items

- Operation of GEM, MicroMEGAS (robustness)
- Gas studies. Ar + (CH₄ or CO₂ or CF₄).... neutron bkg, drift velocity, chimical features...
- Positive ion feedback.
 - $\sim 0.3\%$ seems possible. Good enough?
- Electronics.
 - Massive integration (2M ch). Faster sampling (>20MHz)
- Pad geometry. Size, shape.
- Charge spreading for better resolution. (Charge sharing over multiple pads)
- Time stamping.
- Beam backgrounds.

• In the Case of TPC

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta z = v_{\rm drift} \times \Delta T_0$$

Naively we expect

$$egin{align} \sigma_{\Delta T_0} &\simeq rac{2\sigma_{
m z}}{v_{
m drift}\sqrt{n}} \left[1 + 3\left(rac{d}{L}
ight) + 3\left(rac{d}{L}
ight)^2
ight]^{-rac{1}{2}} \ &\simeq rac{2\sigma_{
m z}}{v_{
m drift}\sqrt{n}} \quad {
m if} \quad \left(rac{d}{L}
ight) \ll 1 \ \end{aligned}$$

Assuming that Z resolution of the external detector is negligible

$$\sigma_{\rm z} = 500 \; \mu {
m m}$$
 $v_{
m drift} = 5 \; {
m cm}/\mu {
m s}$
 $n = 120$

$$\sigma_{\Delta T_0} \simeq 2.0 \text{ ns}$$

Beam background in TPC

- Drift velocity $\sim 5 \text{cm}/\mu\text{s} \to 40\mu\text{s}$ to sweep 2.0m. During which time cold will have the same integrated beam background as one train of warm.
- Vertex dsitributions are different. warm: $70\mu m$ per bunch sp., 1.4cm/train cold: 1.7cm per bunch sp., 50m/train.

• Elimination of trks from other bunches: easier for cold.

Si Tracker (Small detector option)

A 5-layer Si tracker as the central tracking device in high-B field (5Tesla) $(r_{\rm max}=1.25{\rm m},\ L/2=1.67{\rm m}\ {\rm or}\ {\rm a\ larger\ version})$

SiLC: CNM Barcelona, DPNG-Geneva, Helsinki, IEKP-Karlsrule, Obninsk, LPNHE-Paris, INFN-Pisa, Charles U., Rome, Torino, AS Wien + Santa Cruz, Wayne St., Michigan, Korea (KNU, SNU, YSU, SKKU)

R&D Itmes:

- Thinner substrates/mechanical support.
- Long ladders (longer shaping time for low noise etc.).
- Power switching (to match trains).
- Pulse-height information (time walk, dE/dx)
- Alignment (inteferometer a la ATLAS)

Si tracker design (SiLC)

Serious design studies have begun. (Also on sensors and electronics)

Forward Tracker

Silicon microstrip disks to cover down to $|\cos\theta| = 0.99$ (8 deg) First few layers could be pixel sensors (TESLA TDR)

(Santa Cruz, SLAC) simulation and protyping together with the Si tracker R&D.

Intermediate Tracker

Place between the vertex detector and the central tracker to aid track matching between them and to improve momentum resolution.

Relevant R&D's by (LPNHE-Paris, Santa-Cruz/SLAC, Wayne State, Korea)

Additional Trackers

Silicon External Tracker (SET)
 Just after TPC (endcap and barrel)
 (LPNHE-Paris)
 R&D: Cost reduction.

Straw chambers (behind TPC endcap)
 (DESY)
 R&D: spacial resolution, material thickness, bunch tagging, calorimeter sprashback.

Sicintillating fibre tracker
 between Vertexing and TPC
 (Indianna)
 R&D: timing precision, material thickness.

3. Calorimeters

```
EFA/PFA ('Energy/Particle-flow' algorithm):
             Combine information from the trackers.
           the calorimeters, and also the muon system,
                      avoid double counting.
                    assign appropreate weights
                       \rightarrow jet 4-momentum.
             Extensive software effort to begin with.
           Granurarity is critical ('Imaging calorimeter')
                → fine granurarity, on/off readout
                        Try 'Digital HCAL'
CALICE collaboration: (9 coutries, 28 institutions, 164 phycisists)
       Looks like an experimental 'collaboration' itself....
              (Maybe it should be called 'Cal-LC'?)
                             + others
```

Digital vs Analog HCAL (NLC S case) (by NIU)

$$dE_{
m jet}/dE_{
m jet}$$

Digital~Analog: No ful sim. Futher developments are to come.

ECAL

Si-W calorimeter

High granurarity ($\sim 1 \text{cm}^2$), but expensive: \$100M/Si now. How far does it do down? (CALICE, Oregon/SLAC) R&D items:

- Segmentation optimization (cost reduction).
- Prototype construction/test (CALICE 2004).

Tile-fibre calorimeter

Modest granurarity $(4 \times 4 \text{cm}^2)$ (KEK, Niigata, Tsukuba) R&D items:

- Segmentation optimization.
- fibre configuration.
- Prototype construction/test being done.

Si-scintillator hybird

(Como, ITE Warsaw, LNF, Padova, Trieste) Performance-cost optimization.

ECAL (cont'd)

- Showermax detector (for tile-fibre)
 Inserted near showermax to aid granurarity.
 - scintillator strips (Shinshu/Kobe)
 - silicon pads.
- Shashlik calorimeter

Fibres run londitudinally.

Londitudinal segmentation is an issue.

R&D items:

- Londitudinal segmentation
 - scintillating fibres of different decay times
 - photodiodes to readout the front part.
- Scintillator strip calorimeter

Orthogonally arranged. (Tsukuba)

Provides good position and energy resolution.

(Prototype: $dE/E = 0.129/\sqrt{E}$ obtained)

HCAL

Tile-fibre calorimeter

Larger granurarity than the ECAL version.

Fe: good for effective Moliere radius.

Pb: hardware compensation at 4mm/1mm sampling.

(CALICE, KEK, Kobe/Konan)

R&D items:

- Granurarity optimization.
- Optimization of absorber material.(e.g. hardware compensation)
- Prototype construction (also tested with ECAL)
- Photon detectors in high B field:
 APD, SiPM, HPD, HAPD, EBCCD.

SiPM (Silicon Photomultiplier)

- $(42\mu m)^2$ cell, limitted Geiger. $(1mm)^2$ total/SiPM now.
- ullet $V_{
 m bias}\sim$ 50 V.
- Works in a high B-field (5T OK).
- Quantum eff. ~ 0.3 .
- Fast ($\sigma_{1\gamma} = 50$ ps).
- Quite cheap (a few \$/piece).
- Directly attach to a scintillator, fibre, etc. Only electrical wires come out.
- Noisy → moderate cooling?

MINICAL Prototype (CALICE)

(G. Eigen)

- Fe-scintillator sandwich.
- 12 layers, 9 sci tiles each.
- 108 SiPM's. (one on each tile)
- Tile: $5 \times 5 \text{cm}^2$
- A loop fibre → SiPM.
- Obtained similar res. as PMT.

Digital calorimeter

Very-high granurarity ($\sim 1 \text{cm}^2$) with 1-bit readout. After lots of software work \rightarrow jet energy. (CALICE, U. Texas)

R&D items:

- Simulation (Does DHCAL really work as advised?)
 Also in the context of PFA.
- Prototype (tile/digital interchangeable)
- Readout: RPC, scintillator, (wires).
- New readouts (GEM, VLPC).

4. Muon Detector

Muon ID + hadron shower tail

Fe as flux return/hadron absorber Readout: RPC, Scintillation counter strips, or wires. (INFN-Frascati, Kobe, Tohoku, N. Illinois, FNAL)

R&D items needed:

- Mechanical design.
 Support system of the large heavy detector.
- Simulation studies.

Tracking algorithms as a part of PFA (= global particle reconstruction)
Beam backgrounds (timing)
Hadron punch-throughs

Hardware R&D's
 Prototype design and beam tests.

Summary

- In order for LC to be successful, extending the performance fronteers is a necessity.
- R&D activities to meet the challange are intensively under way.
- The R&D efforts are now truly worldwide.
 (CALICE, LC-TPC, SiLC...)
- Many are common to large and small detectors, or cold and warm technologies.
- We should phase in the design of the actual detectors within a few years.