Sfermion production at a Linear Collider at one-loop

Karol Kovařík (HEPHY, Vienna)

In collaboration with Ch. Weber, H. Eberl, W. Majerotto
hep-ph/0401092

With contributions from A. Arhib, W. Hollik
hep-ph/0311149

LCWS Paris, April 2004
MOTIVATION

• At a future e^+e^- LC measurements with high precision possible → requires accurate theoretical predictions including radiative corrections

• LC allows high precision determination of SUSY parameters

• Sfermion production ideal for determination of sfermion mass matrix parameters

• Some sfermions are expected to be light (e.g. light stop due to large mixing)

• SPS1a scenario includes light sleptons

Sfermion production at a Linear Collider

K. K., LCWS Paris, April 2004
RADIATIVE CORRECTIONS TO SFERMION PRODUCTION

existing results:

- QCD corrections to colored scalar particle production in SM
 [Drees, Hikasa ’90]
 [Hikasa, Hisano ’96]

- SUSY-QCD corrections to sfermion production within MSSM
 [Arhrib, Capdequi-Peyranere, Djouadi ’95]
 [Eberl, Bartl, Majerotto ’96]

- Yukawa corrections without box contributions
 [Eberl, Kraml, Majerotto ’99]

calculations presented here:

- weak corrections to $e^+e^- \rightarrow \tilde{f}_i \tilde{f}_j$ for $f = t, b, \tau, \nu_\tau, u, d$

- QED corrections split off

- included already calculated QCD
CALCULATION OF $e^+ e^- \rightarrow \tilde{f}_i \tilde{f}_j$

- all diagrams calculated analytically & checked with FeynArts/FormCalc on amplitude level
- numerical evaluation using LoopTools

some details

- 't Hooft-Feynman gauge
- $\overline{\text{DR}}$ regularization scheme used for UV divergencies
- **on-shell renormalization scheme** with $\alpha(m_Z)$ as input
- **on-shell input parameters** for SPS1a obtained from $\overline{\text{DR}}$ parameters as

$$X^{OS} = \hat{X}(Q) - \delta X(Q)$$
SLEPTON PRODUCTION (3rd gen.)

STAUS

$\sigma(e^+e^- \rightarrow \tilde{\tau}_i \tilde{\tau}_j)$ [fb]

$\tilde{\tau}_1 \tilde{\tau}_1$
$\tilde{\tau}_2 \tilde{\tau}_2$
$\tilde{\tau}_1 \tilde{\tau}_2 + c.c.$

\sqrt{s} [GeV]

TAU-SNEUTRINO

$\sigma(e^+e^- \rightarrow \tilde{\nu}_\tau \tilde{\nu}_\tau)$ [fb]

\sqrt{s} [GeV]

$\tilde{\tau}_1 \tilde{\tau}_2$ — RELATIVE

$\Delta\sigma/\sigma^0(\tilde{\tau}_1 \tilde{\tau}_2)$ [%]

Δprop
Δvertex
Δbox
Δtotal

\sqrt{s} [GeV]

$\tilde{\nu}_\tau \tilde{\nu}_\tau$ — RELATIVE

$\Delta\sigma/\sigma^0(\tilde{\nu}_\tau \tilde{\nu}_\tau)$ [%]

Δprop
Δvertex
Δbox
Δtotal

\sqrt{s} [GeV]
SQUARK PRODUCTION (3rd gen.)

STOPS

\[\sigma(e^+e^- \to t_1\bar{t}_1) \text{ (fb)} \]

\[\sqrt{S} \text{ (GeV)} \]

\[t_1t_1, t_2t_2, t_1t_2 \]

\[\Delta \sigma/\sigma \text{ (e}^+e^- \to t_1t_2) \text{ (%)} \]

\[\sqrt{S} \text{ (GeV)} \]

\[\Delta \text{TOTAL}, \Delta \text{SUSY-QCD}, \Delta \text{PROP}, \Delta \text{VERTEX}, \Delta \text{TOTAL-EW}, \Delta \text{BOX} \]

PLOTS FROM A. ARHRIB, W. HOLLIK

Sfermion production at a Linear Collider

K. K., LCWS Paris, April 2004
SQUARK PRODUCTION (3rd gen.) cont.

SBOTTONS

$\sigma(e^+e^- \rightarrow b_1 b_1)$ (fb)

\sqrt{S} (GeV)

$\Delta \sigma/\sigma_0 (e^+e^- \rightarrow b_1 b_1)$ (%)

PLOTS FROM A. ARHRIB, W. HOLLIK

Sfermion production at a Linear Collider

K. K., LCWS Paris, April 2004
SQUARK PRODUCTION (1st & 2nd gen.) + A_{FB} ASYMMETRY

UP-TYPE SQUARKS

\[\sigma(e^+e^\rightarrow \tilde{u}_i\tilde{u}_j) \text{ [fb]} \]

\[\sqrt{s} \text{ [GeV]} \]

DOWN-TYPE SQUARKS

\[\sigma(e^+e^\rightarrow \tilde{d}_i\tilde{d}_j) \text{ [fb]} \]

\[\sqrt{s} \text{ [GeV]} \]

A_{FB} FOR STOPs

\[A_{FB} \]

\[\sqrt{s} \text{ [GeV]} \]

A_{FB} FOR SBOTTOMs

\[A_{FB} \]

\[\sqrt{s} \text{ [GeV]} \]
POLARIZATION \((e^- \text{ beam polarized})\)

POLARIZED \(\tilde{t}_1 \tilde{t}_2\)

\[
\sigma(e^+e^- \rightarrow \tilde{t}_1 \tilde{t}_2) \quad [\text{fb}]
\]

\[
\sigma_L, \sigma_R
\]

POLARIZED \(\tilde{\tau}_2 \tilde{\tau}_2\)

\[
\sigma(e^+e^- \rightarrow \tilde{\tau}_2 \tilde{\tau}_2) \quad [\text{fb}]
\]

\[
\sigma_L, \sigma_R
\]

POLARIZED \(\tilde{b}_2 \tilde{b}_2\)

\[
\sigma(e^+e^- \rightarrow \tilde{b}_2 \tilde{b}_2) \quad [\text{fb}]
\]

\[
\sigma_L, \sigma_R
\]

POLARIZED \(\tilde{\nu}_\tau \tilde{\nu}_\tau\)

\[
\sigma(e^+e^- \rightarrow \tilde{\nu}_\tau \tilde{\nu}_\tau) \quad [\text{fb}]
\]

\[
\sigma_L, \sigma_R
\]

Sfermion production at a Linear Collider

K. K., LCWS Paris, April 2004
CONCLUSIONS & OUTLOOK

• Sfermion production supposed to be observed at a future LC

• Radiative corrections not negligible ($\sim -10\%$) when high precision results available

• Box corrections are important at high energies

• Sfermion production ideal for sfermion mass matrix parameters fixing

OUTLOOK:

• Full $\mathcal{O}(\alpha)$ corrections - extending current calculation to include full bremsstrahlung