Measuring beam polarisation with e⁺e⁻ interactions at high energy

Klaus Mönig

- Introduction
- W-pairs with e⁻ polarisation only
- Positron polarisation and effective polarisations
- The Blondel scheme with 2-fermion events and W-pairs
- Experimental issues
- Special case: GigaZ
- Conclusions

Introduction

- \bullet Polarisation can be measured with polarimeters to 0.25-0.5% precision
- depolarisation of colliding electrons $\sim 0.5\%$, of outgoing beam $\sim 2\%$
- neither upstream nor downstream polarimeter measures the polarisation we need
 - this problem can be overcome if the polarisation can be measured from annihilation data
- the large luminosity at LC offers also a better precision for data driven methods

Polarisation measurement with Ws

W-pairs

- Cross section $\sigma = 12 7 \, \mathrm{pb}$ at $\sqrt{s} = 350 500 \, \mathrm{GeV}$
- \bullet complicated mixture of ν t-channel and Z, γ s-channel exchange
- large left-right asymmetry, depending on production angle and assumed couplings

- \bullet However forward peak dominated by ν -exchange and basically independent of anomalous couplings
- \longrightarrow can fit for anomalous couplings and \mathcal{P}_{e^-} simultaneously
 - result with $\mathcal{L} = 500 \text{ fb}^{-1}$ at $\sqrt{s} = 340 \text{ GeV}$:

$$\Delta \mathcal{P}_{e^-}/\mathcal{P}_{e^-} = 0.1\%$$

correlations with the couplings negligible

Single W production

Dominating Feynman graph:

- $W^{-}(W^{+})$ asymmetry measured directly $e^{-}(e^{+})$ polarisation
- Only leptonic Ws are useful

• Cross section large for high energies

• W energy stays low

⇒ large acceptance and little confusion/interference with W- and Z-pair production

Sensitivity estimate for $\sqrt{s} = 500 \,\text{GeV}$

$$(\mathcal{L} = 1 \text{ ab}^{-1}, W^{-} \to e^{-}, \mu^{-}, 100\% \text{ efficiency})$$

$$\Delta \mathcal{P}_{e^-}/\mathcal{P}_{e^-} \sim 0.15\%$$

$$\sqrt{s} = 1000 \, \text{GeV}$$
 factor $\sqrt{2}$ better, detailed study started

Positron Polarisation and Effective Polarisations

If both beams are polarised in most cases an "effective polarisation" can be defined that describes the polarisation is a given analysis

e.g. cross section for s-channel vector particle exchange

$$\sigma = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{LR} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]$$

 $\mathcal{P}_{e^+}(\mathcal{P}_{e^-}) = \text{longitudinal polarisations of the positrons (electrons)}$

Relevant combination for A_{LR} measurements:

$$\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-}}$$

Relevant combination for s-channel cross section enhancement/ suppression ($A_{LR} = 0$):

$$\mathcal{P}_{\sigma} = \mathcal{P}_{e^{-}} \mathcal{P}_{e^{+}}$$

Relevant combination for pure left-handed cross section enhancement/suppression

$$\mathcal{P}_L = \mathcal{P}_{e^+} - \mathcal{P}_{e^-} - \mathcal{P}_{e^+} \mathcal{P}_{e^-}$$

Polarimeter measurements and effective polarisations

- if positron polarisation is available the error on the effective polarisations is usually smaller than the single polarisation error
- with $\Delta \mathcal{P}/\mathcal{P} = x$ for both polarimeters:
 - if the error is uncorrelated:

$$\frac{\Delta \mathcal{P}_{\text{eff}}}{\mathcal{P}_{\text{eff}}} = x \frac{\sqrt{(1 - \mathcal{P}_{e^{+}}^{2})^{2} \mathcal{P}_{e^{-}}^{2} + (1 - \mathcal{P}_{e^{-}}^{2})^{2} \mathcal{P}_{e^{+}}^{2}}}{(\mathcal{P}_{e^{+}} + \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}} \mathcal{P}_{e^{-}})}$$

— if the error is fully correlated:

$$\frac{\Delta \mathcal{P}_{\text{eff}}}{\mathcal{P}_{\text{eff}}} = x \frac{1 - \mathcal{P}_{e^{+}} \mathcal{P}_{e^{-}}}{1 + \mathcal{P}_{e^{+}} \mathcal{P}_{e^{-}}}$$

With $\mathcal{P}_{e^+} = 60\%$ a factor 3-4 is gained in the precision of \mathcal{P}_{eff}

Blondel scheme with 2-fermion events

Assume only s-channel vector exchange

Four independent measurements:

(4 combinations with positive/negative electron/ positron polarisation)

$$\sigma_{++} = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{LR} (\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]
\sigma_{-+} = \sigma_u \left[1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{LR} (-\mathcal{P}_{e^+} - \mathcal{P}_{e^-}) \right]
\sigma_{+-} = \sigma_u \left[1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{LR} (\mathcal{P}_{e^+} + \mathcal{P}_{e^-}) \right]
\sigma_{--} = \sigma_u \left[1 - \mathcal{P}_{e^+} \mathcal{P}_{e^-} + A_{LR} (-\mathcal{P}_{e^+} + \mathcal{P}_{e^-}) \right]$$

 \implies Can measure \mathcal{P}_{e^+} , \mathcal{P}_{e^-} simultaneously with A_{LR} if $A_{LR} \neq 0$

$$\mathcal{P}_{e^{\pm}} = \sqrt{\frac{(\sigma_{+-} + \sigma_{-+} - \sigma_{++} - \sigma_{--})(\mp \sigma_{+-} \pm \sigma_{-+} - \sigma_{++} + \sigma_{--})}{(\sigma_{+-} + \sigma_{-+} + \sigma_{++} + \sigma_{--})(\mp \sigma_{+-} \pm \sigma_{-+} + \sigma_{++} - \sigma_{--})}}$$

Only difference between $|\mathcal{P}_{e^{\pm}}^{+}|$ and $|\mathcal{P}_{e^{\pm}}^{-}|$ needs to be known from polarimetry

Available event samples

- \bullet ff events at the highest energy (HE)
- radiative return events $e^+e^- \to Z\gamma \to f\bar{f}\gamma$ (RR)

\sqrt{S}	σ_{RR}	$A_{\mathrm{LR}}(RR)$	σ_{HE}	$A_{\mathrm{LR}}(HE)$
340 GeV	17 pb	0.19	5 pb	0.50
500 GeV	7 pb	0.19	2 pb	0.50

HE events

- easy and background free to select
- large $A_{\rm LR}$ reduces error on \mathcal{P}
- however physics assumption on s-channel vector exchange (not valid e.g. for RPV $\tilde{\nu}$)

RR events

- large cross section
- well known physics (LEP,SLC)
- however large ($\sim 30\%$) Zee background at high energies when photon not reconstructed
- Way out: photon reconstruction
- ••• only 9% efficiency with cut at $\theta_{\gamma} > 7^{\circ}$

Radiative corrections

- for HE sample depolarising effects of ISR are small
- for RR sample they are about 1% if photon is not reconstructed
- if photon is reconstructed, they are negligible

Results:

 $(\mathcal{P}_{e^{-}} = 0.80, \, \mathcal{P}_{e^{+}} = 0.60, \, \sqrt{s} = 340 \,\text{GeV} \text{ (results scale with } \sqrt{\sigma}), \, \mathcal{L} = 500 \,\,\text{fb}^{-1})$

Luminosity ratio + - / - + / + + / - - = 1/1/1/1

• Radiative return:

$$\frac{\delta \mathcal{P}_{e^{-}}}{\mathcal{P}_{e^{-}}} = 0.0051 \quad \frac{\delta \mathcal{P}_{e^{+}}}{\mathcal{P}_{e^{+}}} = 0.0053 \quad corr. = -0.91$$

• High energy:

$$\frac{\delta \mathcal{P}_{e^{-}}}{\mathcal{P}_{e^{-}}} = 0.0010 \quad \frac{\delta \mathcal{P}_{e^{+}}}{\mathcal{P}_{e^{+}}} = 0.0012 \quad corr. = -0.49$$

Luminosity ratio + - / - + / + + / - - = 9/9/1/1

• Errors ~factor two larger

Positron polarisation and W-pairs

- Principle similar to 2-fermion case
- however sensitivity depends strongly on polar angle
- fit simultaneously polarisations and anomalous couplings
- right-handed electron-W coupling still forbidden

Up to now only analysis with analytic Born level formulae and approximate acceptance cuts

(It has however been checked to reproduce the anomalous couplings)

$$\mathcal{L}_{\pm\pm}/\mathcal{L} = 0.5$$

$$\frac{\delta \mathcal{P}_{e^-}}{\mathcal{P}_{e^-}} = 0.0007 \quad \frac{\delta \mathcal{P}_{e^+}}{\mathcal{P}_{e^+}} = 0.0011 \quad corr. = 0$$

$$\mathcal{L}_{\pm\pm}/\mathcal{L} = 0.1$$

$$\frac{\delta \mathcal{P}_{e^{-}}}{\mathcal{P}_{e^{-}}} = 0.0011 \quad \frac{\delta \mathcal{P}_{e^{+}}}{\mathcal{P}_{e^{+}}} = 0.0021 \quad corr. = -0.52$$

Results for the effective polarisations:

	value	Rel. error [%]									
		$\mathcal{L}_{\pm\pm}/\mathcal{L} = 0.5$			$\mathcal{L}_{\pm\pm}/\mathcal{L} = 0.1$						
		HE	rr	WW	HE	rr	WW	$\rho = 0$	$\rho = 0.5$		
									0.16		
\mathcal{P}_{σ}	0.48	0.11	0.22	0.13	0.18	0.42	0.18	0.71	0.87		
$\mid \mathcal{P}_L \mid$	0.92	0.03	0.12	0.03	0.06	0.25	0.03	0.19	0.21		

$$\begin{aligned} \mathcal{P}_{\text{eff}} &= \frac{\mathcal{P}_{e^+} + \mathcal{P}_{e^-}}{1 + \mathcal{P}_{e^+} \mathcal{P}_{e^-}} \\ \mathcal{P}_{\sigma} &= \mathcal{P}_{e^-} \mathcal{P}_{e^+} \\ \mathcal{P}_{L} &= \mathcal{P}_{e^+} - \mathcal{P}_{e^-} - \mathcal{P}_{e^+} \mathcal{P}_{e^-} \end{aligned}$$

Data methods have a high potential if positron polarisation available

The large anticorrelation between \mathcal{P}_{e^-} and \mathcal{P}_{e^+} , especially for the radiative return sample, reduces significantly the error on the effective polarisations

Experimental issues

Assumptions involved:

- absolute values of right- and left-handed polarisations are the same.
- no correlations between electron and positron polarisation exists

$$|\mathcal{P}(L)| \neq |\mathcal{P}(R)|$$
 Assume $\mathcal{P} = \pm \langle |\mathcal{P}| \rangle + \delta \mathcal{P}$

- Ws with e^- polarisation only: $\Delta \mathcal{P}/\mathcal{P} = \delta \mathcal{P}$
- $\bullet e^-$ and e^+ polarisation with Blondel scheme:
 - -high energy sample:

$$\begin{split} \Delta \mathcal{P}_{e^-} &= 1.0 \delta \mathcal{P}_{e^-} + 0.6 \delta \mathcal{P}_{e^+} \\ \Delta \mathcal{P}_{e^+} &= -0.5 \delta \mathcal{P}_{e^-} - 0.7 \delta \mathcal{P}_{e^+} \end{split}$$

- radiative return sample

$$\Delta \mathcal{P}_{e^{-}} = 2.4 \delta \mathcal{P}_{e^{-}} + 2.1 \delta \mathcal{P}_{e^{+}}$$

$$\Delta \mathcal{P}_{e^{+}} = -1.7 \delta \mathcal{P}_{e^{-}} - 1.7 \delta \mathcal{P}_{e^{+}}$$

- Large effect, but partial cancellation in effective polarisation

ullet have to get $\delta \mathcal{P}$ from polarimeters

 $-\mathcal{P}(L)$ and $\mathcal{P}(R)$ can be measured individually flipping by laser polarisation

have to assure that laserelectron luminosity does not by o
depend on laser polarisation -0.5

-can be unfolded internally in multichannel polarimeter with large lever-arm in analysing power

- easier upstream?

Analysing power range of TESLA polarimeter

Correlations

In formulae for the Blondel scheme and in effective polarisations products of \mathcal{P}_{e^+} and \mathcal{P}_{e^-} enter

- \Rightarrow have to understand correlations between \mathcal{P}_{e^+} and \mathcal{P}_{e^-}
 - correlation inside bunch, e.g. via interaction time
 - negligible according to CAIN
 - correlated time dependencies
 - -effect quadratic with polarisation change
 - -changed both polarisations for $\pm 5\%$ for half of the time
 - → 0.25% effect on polarisation
 - -Blondel scheme reproduces effective polarisation worse than polarimeter measurement.
 - $(\Delta \mathcal{P}_{\text{eff}} = 0.16\% \text{ for polarimeter}, \Delta \mathcal{P}_{\text{eff}} = 0.25\% \text{ for Blondel scheme})$
 - -need polarimeters to track time dependencies and possibility to change polarisation fast, e.g. parallel spin rotators for positrons

• correlation in depolarisation from realistic bunches no detailed study yet, but study of K. Thompson indicated that effect is small

• can there be spatial correlations from bends etc.?

Special case: GigaZ

- GigaZ: 10^9 Z decays to measure $\sin^2\theta_{eff}^l$ with a precision of 10^{-5} via $A_{\rm LR}$
- e^+ polarisation with Blondel scheme is a must if this precision shall be reached
- A_{LR} will be unfolded internally \Rightarrow no additional physics assumption

$$A_{\rm LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

- main challenge from polarimetry: difference between left- and right-handed polarisation needs to be understood to $< 10^{-4}$
- for time dependences 1% precision is sufficient
- other polarisation systematics seem negligible
- non polarisation systematics not discussed in this talk

Conclusions

- The polarisation can be measured from the data themselves.
- Each measurement from data involves some physics assumptions.
- The errors are in the per mille region for 500 fb^{-1}
- The exact requirements have to be studied by the different analyses separately
- Polarimeters are needed for corrections
- Polarimeter and data methods are largely complementary and both are needed to get the ultimate precision.