The Little Higgs boson at a photon col

Heather Logan (University of Wisconsin, Madis

John F. Gunion (University of California, Dav

International Conference on Linear Colliders (LCV Paris, 19-23 April 2004

Higgs production at a photon collider

The Higgs boson is produced at a photon collider via induced $\gamma\gamma H$ coupling.

 $[\gamma\gamma
ightarrow H
ightarrow bar{b}$ signal Asner et al, hep-ex/011105

Expected precisions:

$\gamma\gamma o H$ in the Standard Model and beyond

 $\gamma\gamma o H$ comes from the gauge-invariant dim-6 opera

$$\mathcal{L} = \frac{C}{\Lambda^2} H^{\dagger} H F_{\mu\nu} F^{\mu\nu}$$

induced by ${\it W}$ boson and top quark loops in the SM.

Taking $C=e^2/16\pi^2$ (electromagnetic, loop-induced $\Lambda_{SM}=165$ GeV. Right scale for W and t loops.

How high a Λ_{new} can be probed with a 2% measure $\gamma\gamma \to H$?

If $C_{new} = C_{SM}$ (weakly coupled new physics): $\Lambda_{new} = 1.2$ (0.74) TeV at 95% CL (5 σ).

If $C_{new} = 1$ (strongly coupled new physics): $\Lambda_{new} = 48$ (31) TeV at 95% CL (5 σ).

The Littlest Higgs model

The Littlest Higgs model is a new approach to stabiliz scale against radiative corrections, thereby solving the ness problem of a light Higgs boson.

New particles at the TeV scale cancel off the SM qu vergence of the Higgs mass from top (T), gauge (Z_H) and Higgs $(\Phi^{0,+,++})$ loops.

- Higgs is a pseudo-Goldstone boson from global symmetry breaking at scale $\Lambda \sim 4\pi f$ $\Lambda \sim 4\pi f \sim 10 - 30$ TeV;
- Quadratic divergences cancelled at one-loop level by new states $M \sim gf \sim 1-3$ TeV;
- Higgs acquires a mass radiatively at the EW scale $v \sim g^2 f / 4\pi \sim 100 - 300$ GeV.

 4π

Corrections to $\gamma\gamma \to H$ in the Littlest Higgs ma

 $\gamma\gamma \to H$ is loop induced: TeV-scale charged particles V $\Phi^{\pm\pm}$ can run in the loops

Higgs couplings to SM particles modified due to mixing SM and TeV-scale particles and corrections to SM particles.

Accessible range four ning over model para Corrections are of or

Higgs decays in the Littlest Higgs model

Corrections to Higgs decays [from mixing between SN scale particles and corrections to couplings]: also $\mathcal{O}(n)$

- Corrections about the same size in each channel.
- ullet Best channel from experimental side: $H o b ar{b}$.

Model parameters

f - new physics so c - $SU(2)_{1,2}$ gap mixing angle $[Z_H, c_t$ - top sector par x - Higgs sector (controls triplet Φ c' - $U(1)_{1,2}$ gap

mixing angle [EW

favors only one U

 $1/\sqrt{2}$, no A_H part

Using $\gamma\gamma o H o bar{b}$ to probe the Littlest Higgs

What can be done with the $\gamma\gamma o H o b \overline{b}$ rate measure

- Test the model: probe $\Lambda_{new} \sim 1-3$ TeV.
- Search for strongly-coupled UV completion: probe $\Lambda_{new} \sim \text{few} \times 10 \text{ TeV}$.

Must be able to predict the rate for $\gamma\gamma \to H \to b\bar{b}$, R= with a precision comparable to the photon collider exuncertainty of 2%.

We therefore compute how well each model parameter measured (at the LHC) in order to contribute no more uncertainty to R (i.e., $|\delta R/R_{SM}| \leq 1\%$).

Input precisions: M_{Z_H} and M_{A_H}

Measure Z_H $(A_H) \rightarrow$ dileptons.

Dilepton invariant mass resolution typically a few per \rightarrow no problem.

Input precisions: c_t

The $\gamma\gamma\to H\to b\bar{b}$ sensitive to c_t at a level.

→ Don't need a meas this parameter.

Input precisions: x

If f, c and c' are known, then x can be extracted from the current $\delta M_W = 39$ MeV gives good enough pred (except for $x \lesssim 0.1$, f = 1 TeV).

[Tevatron Run II (2 fb⁻¹) goal: $\delta M_W = 20$ MeV.]

Χ

Input precisions: f

EW precision constraints: $f\gtrsim 1$ TeV \to want $\gtrsim 6\%$ precision $M_{Z_H}=gf/2sc$ and cross section $\propto c^2/2sc$. Uncertainty on cross section from statistics: $\delta\sigma/\sigma=1$

Summary

Photon collider can measure Rate $(\gamma\gamma \to H \to b\bar{b})$ $m_H=115$ GeV.

Rate $(\gamma\gamma \to H \to b\bar{b})$ in the Littlest Higgs model can calculated from LHC data on model parameters in a of the parameter space.

Probe the UV completion at \sim 10 TeV!

- A strongly coupled UV completion contributes at order as the TeV-scale particles:
 - \sim several percent for $f \sim 1-3$ TeV.
- A weakly coupled UV completion should not affe at an observable level:
 - \rightarrow Measurement is a test of model consistency.