Improving our knowledge of charm tragmentation

Matthew Wing

Introduction and motivation

charm fragmentation Ideas for improving knowledge of

Outlook

Introduction and motivation

Need to describe charm fragmentation:

- for parametrisations in models used in NLO, MC, ...
- used for understanding QCD in hadronic collisions
- an uncertainty in predictions

Information on charm fragmentation:

- from e^+e^- experiments
- from many experiments (LEP, CLEO, PEP, PETRA,...)
- not exhausted in hadronic environments

Which experiments?

The following have measured $z\sim E_{D^*}/E_c$

ZEUS	JADE	HRS	TASSO	DELCO*	TPC	ALEPH	OPAL	CLEO	ARGUS	Experiment
> 18 (~ 30)	$29.9 \rightarrow 38.7$	29	$28 \rightarrow 46.8$	29	29	91	91	10.55	9.01	\sqrt{s} (GeV)
YES	YES	YES	YES	(YES)	YES	N O	NO	YES	YES	corrected?

Consistency of all e^+e^- experiments?

ZEUS has a hadron-like environment; consistency with e^+e^- experiments?

Would be good to have measurements from the TeVatron.

*no values in paper or HEPDATA

Comparing data

Can compare different models with data and fit;

- consistency of data
- contrain the parametrisations

Put all data points in HZTOOL and compare with different models in JETSET.

Compare with NLO (more complicated).

Is there other data which could be used?

What else could be done?

in DIS and PHP. Fit cross sections which are sensitive to the fragmentation, e.g. $p_T(D^*)$, $\eta(D^*)$,

S. Schagen thesis; $\epsilon = 0.078^{+0.008}_{-0.010}$.

Could be improved? Use more recent data, Schagen only used DIS data.

Combine all information.

Outlook

Code up old results on fragmentation and check consistency with PYTHIA.

Comparison of e^+e^- and ZEUS results.

Similarly in NLO.

Fit cross sections sensitive to fragmentation.