Resummation at small x

Anna Stasto

DESY Hamburg & IFJ PAN Kraków

Collinear poles

Mellin variables:

$$\gamma \quad \leftrightarrow \quad \ln k^2 \\
\omega \quad \leftrightarrow \quad \ln 1/x$$

Kernel expansion:

$$\chi(\gamma) = \sum_{k} \bar{\alpha}_s^k \chi^{(k)}(\gamma)$$

LLx:

$$\chi^{(0)}(\gamma) \sim \frac{1}{\gamma} + \frac{1}{1-\gamma} + \dots$$

(where ... denote other poles). NLLx (symmetric scales):

$$\chi^{(1)}(\gamma) \sim \frac{A_1}{\gamma^2} + \frac{A_1}{(1-\gamma)^2} - \frac{1}{2\gamma^3} - \frac{1}{2(1-\gamma)^3}, \quad A_1 = -\frac{11}{12}$$

Choice of scales

Green's function (ν energy, k, k' scales of two probes):

$$\mathcal{G}(\nu, k, k') = \int \frac{d\omega}{2\pi i} \left(\frac{\nu}{kk'}\right)^{\omega} \mathcal{G}_{\omega}(k, k')$$

Choice of scales:

$$k^2 \sim k'^2$$
, $Q_0^2 = kk'$ symmetric
 $k^2 > k'^2$, $Q_0^2 = k^2$ DGLAP
 $k^2 < k'^2$, $Q_0^2 = k'^2$ anti – DGLAP

Look for kernel which satisfies similarity transformations:

$$\mathcal{K}_{\omega}(k, k') \longrightarrow \mathcal{K}_{\omega}^{u}(k, k') = \mathcal{K}_{\omega}(k, k') \left(\frac{k}{k'}\right)^{\omega}, Q_{0}^{2} = k^{2}$$

$$\mathcal{K}_{\omega}(k, k') \longrightarrow \mathcal{K}_{\omega}^{l}(k, k') = \mathcal{K}_{\omega}(k, k') \left(\frac{k'}{k}\right)^{\omega}, Q_{0}^{2} = k'^{2}$$

Shifted kernel

Multiplying \mathcal{K} by $(k/k')^{\omega}$, leads to shifts in $\chi(\gamma)$:

$$\chi_{\omega}(\gamma) \simeq \frac{1}{\gamma + \frac{\omega}{2}} + \frac{1}{1 - \gamma + \frac{\omega}{2}}$$

Expand in ω :

$$\chi_{\omega}(\gamma) \simeq \frac{1}{\gamma} + \frac{1}{1-\gamma} - \frac{\omega}{2} \frac{1}{\gamma^2} - \frac{\omega}{2} \frac{1}{(1-\gamma)^2} + \dots$$

Use condition $\omega = \bar{\alpha}_s \chi(\gamma) \simeq \frac{\bar{\alpha}_s}{\gamma} + \frac{\bar{\alpha}_s}{1-\gamma}$:

$$\chi^{(0)}(\gamma) + \bar{\alpha}_s \chi^{(1)}(\gamma) \simeq \frac{1}{\gamma} + \frac{1}{1-\gamma} - \frac{\bar{\alpha}_s}{2} \frac{1}{\gamma^3} - \frac{\bar{\alpha}_s}{2} \frac{1}{(1-\gamma)^3} + \dots$$

Shift in ω generated cubic poles in γ . Recover partially NLLx result.

If the choice of scales was different \rightarrow different form of NLLx kernel.

Non-singular DGLAP terms

Take DGLAP term with full splitting function $\omega P_{gg}(\omega) = 1 + \omega A_1(\omega)$ and expand in ω

$$\frac{\omega P_{gg}(\omega)}{\gamma} = \frac{1}{\gamma} + \omega \frac{A_1(\omega)}{\gamma} \simeq \frac{1}{\gamma} + \bar{\alpha}_s \frac{A_1(0)}{\gamma^2}$$

non-singular term (in ω) of the splitting function appears at NLLx.

Idea (roughly): (Ciafaloni, Colferai, Salam)
Take shifted kernel + nonsingular DGLAP terms.

Original CCS model not very practical since formulated in Mellin space. New model written in $(\ln k^2, \ln 1/x)$ space.

Advantage: Can easily compute gluon Green's function.

Form of kernel in (x, k^2) space

 ω shift \leftrightarrow kinematical constraint (cutoff onto real part of emissions in the kernel)

- symmetric: kz < k' < k/z
- **DGLAP**: $k'^2 < k^2/z$
- anti-DGLAP: $k'^2 > k^2 z$

$$K^{\text{resum}}(z; k, k') = \bar{\alpha}_s(\mathbf{q}^2) K_0^{kc}(z, k, k') + \bar{\alpha}_s(k_>^2) K_c^{kc}(z, k, k') + \bar{\alpha}_s^2(k_>^2) \tilde{K}_1(z, k, k')$$

where:

 $K_0^{kc}(z,k,k')$ LLx BFKL with kinematical constraint $K_c^{kc}(z,k,k')$ LO non-singular(in x) DGLAP with kinematical constraint $\tilde{K}_1(z,k,k')$ NLLx term with subtractions of $1/\gamma^2,1/\gamma^3$ poles because they are resummed in K_0^{kc} and in K_c^{kc} Important: choice of scale in $\bar{\alpha}_s$

Resummed splitting function

Deconvolution of the integral equation \rightarrow get the splitting function Define integrated gluon density:

$$xg(x,Q^2) = \int^{Q^2} dk^2 G^{(Q_0^2=k^2)}(x;k,k_0)$$

Solve numerically for the effective splitting function

$$\frac{dg(x,Q^2)}{d\log Q^2} = \int \frac{dz}{z} P_{\text{eff}}(z,Q^2) g(\frac{x}{z},Q^2)$$

 $P_{\rm eff}$ in the limit $Q^2\gg k_0^2$ (should be) independent of the regularisation of the coupling and of the choice of k_0

Resummed splitting function

- mild dependence on the infrared cutoff
- renormalisation scale dependence
- characterstic dip around $x = 10^{-3}$
- ightharpoonup rise in x postponed to smaller values
 - initial decrease coincides with NNLO small x part

Can HERA data discriminate between NNLO and resummed answer? Will resummed calculation make gluon positive? How important is P_{qq} ?