Negative Gluon Density and GVDM at low Q^2

J. Alwall and G. Ingelman, hep-ph/0402248

Problem:

DIS formalism and parton pdf's applied at very low Q^2

$$\frac{d\sigma}{dxdQ^2} \sim F_2(x, Q^2) \sim xq(x, Q^2)$$

need quark densities, but no or negative gluon density to avoid too much DGLAP evolution Solution: Low Q^2 does not resolve partons!

Generalised vector meson dominance model accounts for cross-section at $Q^2 \lesssim 1 \text{ GeV}^2$

 \hookrightarrow parton pdf's work well for $Q^2\gtrsim 1~{\rm GeV^2}$

Generalised Vector Meson Dominance Model in ep at low Q^2

Quantum fluctuations $|\gamma\rangle=C_0|\gamma_0\rangle+\sum_V \frac{e}{f_V}|V\rangle+\int_{m_0}dm_V(\ldots)|V\rangle$

i.e. photon \to vector mesons $V=\rho^0,\omega,\phi\ldots+$ continuum followed by $Vp\to X$ with soft hadronic cross-section

$$\sigma_{T,L}^{\rm GVDM}=P(\gamma\to V)\sigma_{Vp}$$
 ; $\sigma_{Vp}=A_Vs^\epsilon+B_Vs^{-\eta}$; $\epsilonpprox 0.08$

In
$$ep$$
:
$$F_2(x,Q^2) = \frac{(1-x)Q^2}{4\pi^2\alpha} (\sigma_T + \sigma_L)$$

$$s_{\gamma p} = Q^2 \frac{1-x}{x} + m_p^2 \approx Q^2/x \text{ at small-} x$$

$$\Rightarrow F_2^{\text{GVDM}}(x, Q^2) = \frac{(1-x)Q^2}{4\pi^2\alpha} \left\{ \sum_V r_V \left(\frac{m_V^2}{Q^2 + m_V^2} \right)^2 \left(1 + \xi \frac{Q^2}{m_V^2} \right) + r_C \frac{m_0^2}{Q^2 + m_0^2} \right\} A \left(\frac{Q^2}{x} \right)^{\epsilon}$$

More complex Q^2 -dependence from σ_L and continuum than simple VDM

Parameters 'known' from GVDM:
$$r_V = \frac{4\pi\alpha}{f_V^2} \frac{A_V}{A}$$
, $r_C = 1 - \sum_V r_V$

$$m_0 \approx 1$$
 GeV, $r_{V=\rho,\omega,\phi,C} = 0.67, 0.062, 0.059, 0.21; $\xi \approx 0.25$$

HERA F_2 at low Q^2

ZEUS 1997 data

GVDM model fits well

$$\chi^2 = 87/(70 - 4) = 1.3$$

with parameter values

$$\epsilon=0.091$$
 $m_0=1.5~{
m GeV}$ $A=71\,\mu{
m b}$ $\xi=0.34$

as expected

HERA F_2 at intermediate Q^2

In DIS-region: GVDM needs scale-down (form factor) with Q^2

$$\begin{aligned} &\mathsf{GVDM} \times \left(\frac{Q_0^2}{Q^2}\right)^a \text{ with } a = 1.8 \\ &\mathsf{for} \ Q^2 > Q_0^2 = 1.26 \quad \text{(fitted)} \\ &\to \mathsf{GVDM} \ \mathsf{negligible} \ \mathsf{for} \ Q^2 \gtrsim 3 \end{aligned}$$

Adding parton densities, here Alwall-Edin-Ingelman model, gives good description of data without negative gluon density