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Statistics course outline

Lecture 1

1. Probability

2. Random variables, probability densities, etc.
3. Brief catalogue of probability densities

4. The Monte Carlo method

Lecture 2

1. Statistical tests

2. Fisher discriminants, neural networks, etc.
3. Goodness-of-fit tests

4. The significance of a signal

5. Introduction to parameter estimation

Lecture 3

1. The method of maximum likelihood (ML)
2. Variance of ML estimators
3. The method of least squares (LS)

4. Interval estimation, setting limits
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Some statistics books, papers, etc.

G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998

see also www.pp.rhul.ac.uk/ cowan/sda

R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods
in the Physical Sciences, Wiley, 1989

see also hepwww.ph.man.ac.uk/ roger/book.html
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986

W. Eadie et al., Statistical Methods in FExperimental Physics,
North-Holland, 1971

S. Brandt, Statistical and Computational Methods in Data Analysis,
Springer, New York, 1998
with FORTRAN and C program library

S. Eidelman et al. (Particle Data Group), Review of Particle Physics,
Physics Letters B592 (2004) 1; see also pdg.1bl.gov.

sections on probability, statistics, Monte Carlo
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Data analysis in particle physics

Ql

q
e \ e Observe N events

\ of a certain type
q

I\

Measure characteristics of each event (angles, event shapes

particle multiplicity, number found for a given / Ldt,...)

Theories (e.g. SM) predict distributions of these properties

up to free parameters, e.g. a, G, My, ag, my, . ..
Some tasks of statistical data analysis:

Estimate the parameters.

Quantify the uncertainty of the parameter estimates.

Test to what extent the predictions of a theory are in agreement

with the data.

There are various elements of uncertainty :

theory is not deterministic,
random measurement errors,

things we could know in principle but don’t,...

— quantify using PROBABILITY
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Definition of probability

Consider a set S with subsets A, B, ...

Forall AC S, P(A) >0 Kolmogorov axioms

P(S)— 1 (1933)

IfANB=0,P(AUB)= P(A)+ P(B)

From these axioms one can derive further properties e.g.
P(A)=1- P(A)
P(AUA) =1
P(()=0
if A C B, then P(A) < P(B)
P(AUB)=P(A)+ P(B)— P(AN B)

Also define conditional probability of A given B (with P(B) # 0) as

P(AN B)
P(A|B) =

P(B)

Subsets A, B independent if P(AN B) = P(A)P(B) .

P(A)P(B)
P(B)

N.B. do not confuse with disjoint subsets, i.e. AN B = (.

If A, B independent, P(A|B) =

= P(A)
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Interpretation of probability

I. Relative frequency

A, B, ... are outcomes of a repeatable experiment

lim outcome is A

n

(cf. quantum mechanics, particle scattering, radioactive decay, . ..)

II. Subjective probability

A, B,...are hypotheses (statements that are true or false)
P(A) = degree of belief that A is true

— Both interpretations consistent with Kolmogorov axioms
— Data analysis in HEP: frequency interperation often most natural,
but subjective probability has some attractive features, e.g.

more natural treatment of phenomena that are not repeatable:

Systematic errors (same upon repetition of experiment)
The particle in this event was a positron

Nature is supersymmetric

Billionth digit of mis 7

It will rain tomorrow (uncertain future event)

[t rained in Cairo on March 8, 1587 (uncertain past event)
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Bayes’ theorem

From the definition of conditional probability,

P(ANB) P(BNA)

P(A|B) = P and P(B|A) = P

but P(ANB) = P(BNA), so

P(A|B) = Bayes’ theorem

First published (posthumously) by
the Reverend Thomas Bayes
(1702-1761)

An essay towards solving a problem in the doctrine of chances,
Philos. Trans. R. Soc. 53 (1763) 370.
Reprinted in Biometrika, 45 (1958) 293.
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T'he law of total probability

Consider a subset B of the sample space S,

B

/
/

BNA;

divided into disjoint subsets A; such that U;A; = .5,
%B:BHS:BH(UZ'AZ'):U@(BHAZ')

— P(B) = %, P(BJA;) P(A)) (law of total probability)

Bayes’ theorem becomes

P(B|A) P(A)

P(A|B) =
A ¥ P(B|A;) P(A;)
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An example using Bayes’ theorem

Suppose the probabilities (for anyone) to have AIDS are:

P(AIDS) = 0.001 < prior probabilities, i.e.
P(no AIDS) = 0.999 before any test carried out

Consider an AIDS test: result is + or —

P(+|AIDS) = 0.98 < probabilities to (in)correctly
P(—|AIDS) = 0.02 identify AIDS infected person
P(+4|no AIDS) = 0.03 < probabilities to (in)correctly
P(—|no AIDS) = 0.97 identify person without AIDS

Suppose your result is +. How worried should you be?

P(+|AIDS) P(AIDS)

P(AIDS|+) =
P(+|AIDS) P(AIDS) + P(+[no AIDS) P(no AIDS)

0.98 x 0.001

0.98 x 0.001 + 0.03 x 0.999

= 0.032 <+ posterior probability

i.e. you're probably OK!

Your viewpoint: my degree of belief that I have AIDS is 3.2%
Your doctor’s viewpoint: 3.2% of people like this guy will have AIDS
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Random variables

Suppose outcome of experiment is x (label for element of sample space)
P(z found in [z, z + dz|) = f(z)dx

— f(x) = probability density function (pdf)

/ > f(:l?) dr =1 (x must be somewhere)

—0o0

F (x) = /:Eoo f(x') dr'  + cumulative distribution function

£(%)
F(¥)

03 f @

0.75

0.2
05

01 r 0.25

For discrete case:

fi = P(z;)
%:fizl

F(z)= ¥ P(z;)

T, <x
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Histograms

pdf = histogram with:

infinite data sample

zero bin width

normalized to unit area

N(x)
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1. = number of entries

Az = bin width
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Multivariate case

Outcome characterized by > 1 quantity, e.g.  and y

10 T T T
y ___eventA
8 B . . ' T
6 . : -
4 . _
event B
dy
2 -
O | | |
0 2 4 6 8 10

P(ANB) = f(x,y)dzdy
— f(x, y) = joint pdf

//f(x,y)d:cdyzl
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Marginal distributions

Projections of joint pdf (scatter plot) onto &, Y axes:

03

0.2

(b)

f:c(x) — /f(xay) dy
fy(y) =] f(z,y)dx

— fz(x), f,(y) = marginal pdfs

10
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Conditional pdt

Recall conditional probability:

P(ANB) f(x,y)dxdy
PO "pa) T L

f(z,y)

Define h(y|z) =

conditional pdfs

flz,y)
g(zly) =
Xy %0
10 ! : ‘% : R 05
Y @ | (b)

8 R ' 0.4

6 0.3

4 0.2

2 o %e dx % %dX 0.1

o 0 2 4 6 8 10 o 0 2 4 6 8 10

X y

Bayes’ theorem becomes

 hiyl2) fulo)
glely) === F 1)

Recall A, B independent if P(AN B) = P(A)P(B)

= Z, Y independent if f(:C, y) = fx(x)fy(y)
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LAPCLLALIULL ValuGo

Consider continuous r.v. Z with pdf f(x).

Define the expectation (mean) value as:
Elx] = [z f(z)dx

NB. E [:B] is not a function of o , rather a parameter of f(a:)

Notation (often): F|x| = u

For discrete variable, £/ [:C] =Yz P (:L‘z)
1

For a function y(x) with pdf g(y),

Elyl=[ygly)dy = [y(x) f(x)dx (equivalent)

Variance:

Notation: V[QZ] =0
Standard deviation: 0 = V02  (same dimension as x)
/

Algebraic moments: [ [:Cn] = W, (,ul - ,LL).

Central moments: F/ [(x — ,u)"} = U (0 — ,ug)
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wovdllallCe dllu COULLICTIauLlULL

Define the covariance cov|x, 3| (also use matrix notation ny) as

cov|z,y] = El(z — p)(y — py)] = Elzy] — popy

Correlation coefficient (dimensionless) defined as

B cov|x, Y|

=", —-1<p,, <1
Pzy 040, > Py >

p=0.75 . I | p=—0.75
2 r — 2 4
0 | | | | 0 | | | |
0 2 4 6 8 10 0 2 4 6 8 10
X X
Y 10 T T T T Y 10 T T T T
s L (c) i s L i
p=0.95 61 1 er 1 p =0.25
4 . 4 .
2 b . 2+ 8
0 | | | | 0 | | | |
0 2 4 6 8 10 0 2 4 6 8 10
X X

If £, y, independent, ie. f(x,y) = fx(x)fy(y), then
Elzy] = [ [zy f(z) dzdy = p,p,
- COV[:U, y] =0 x and y ‘uncorrelated’

N.B. converse not always true.
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krror propagation

Suppose T = (:Cl, . ,xn) follows some joint pdf f(f)

f(f) maybe not fully known, but suppose we have covariances
Vij = cov|z;, x;]

and the means [ = F/[Z]  (in practice only estimates).

Now consider a function y(f)

What is the variance V [y] = F [yz] — (F [y])2 ?

Expand y(Z) to 1st order in a Taylor series about [i :

(xz' — Mz‘)

F=ji

y(@) = y(i) + X

8562'
We need E'|y| and E[yQ]. These are:

Ely(Z)| =~ y(fi) since E|x; — ;] =0, and

— — — n 8
Bly*(®)] ~ y*(i) +2y(f) - £ | 57| Elei -
- tlr=p
n [0y n | Oy
o n 8y (9y
— 2 g g
BAR +z',j2:1 Ox; 0x; f:ﬁVz
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Error propagation (continued)

Putting this together gives the variance of y(f),

Oy 9y
8332' (9513]'

2 n
4,J=1

Q
2

Vij

- =
TrT=

If the x; are uncorrelated, i.e. Vl-j = UZ-2 5@’]-, then this becomes

0
0'2 ~ y 0'.2
(9@
Similar for set of m functions, g(f) = (11(Z), ..., ym(T)),
n 3% (9yz
Uk = cov|yg, 2 V.
kl Yk, Y] = 31’2 (%] . ij
: . . T 8yz
or 1n matrix notation, U=AV A , Where Aij — 87
£Cj o =

These are the ‘error propagation’ formulae, i.e. the covariances,
. . . —
which summarize the ‘errors’ in measurements of ', are propagated

to the new quantities g(f)

Limitations: exact only if y( ) linear. Approximation breaks down

if function nonlinear over a region comparable in size to the ;.

N.B. We have said nothing about the exact pdf of the x;,

e.g. it doesn’t have to be Gaussian.
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bError propagation: some special cases

Yy=x1+ Iy

2 2

= 05 = 0] + 05 + 2cov|xy, T3]

Y = T1X2
2 2 2
o ) o COV|T1, T2
= ¥ ="14 242 71,7
y 331 232 xle

That is, if the o; are uncorrelated:
add errors quadratically for the sum (or difference),

add relative errors quadratically for product (or ratio).

But correlations can change this completely!

Consider e.g. Yy = 1 — T2, with

COV|X1,X
Mlzuzzlo, 0'120'2:1, andp: [1 2]:().
0109

Then E[y] = p1 — po = 0 and V]y] = 12+12=2,
ie. oy, =14 .

Now suppose p = 1. Then
Viy =124+1*-2=0, ieo,=0.

i.e. for p — 1, error in difference — 0.
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Binomial distribution

Consider /V independent experiments (Bernoulli trials):
outcome of each is ‘success’ or ‘failure’,

probability of success on any given trial is p.

Define discrete r.v. 7 = number of successes (0 <n<N )

Probability of a specific outcome (in order), e.g. ssfsf is

pp(1—p)p(1=p) = p"(1=p)"™"
N
But order not important; there are nl(N —n)!

ways (permutations) to get 1 successes in [V trials.

The binomial distribution is thus

N!

- N _ n(1 — N—n
f(n; N, p) AN —i” (1-p)
7N
random variable  parameters
We can show
N N!
’ n 1_ N—n — 1
ngo n!(N — n)!p (=P

as required.
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Binomial distribution (continued)

For expectation value and variance we obtain:
N
Eln] = ¥ nf(n;N,p) = Np
Vln] = E[n*] - (E[n])> = Np(1 - p)

Recall &/ [n], V[n] are not random variables, but are constants which

depend on the true (and possibly unknown) parameters NV and p.

T 04 = 04
z N=5 z N=20
E o2l N N p=05 | E o2l N N p=01 |
0 [ H H il 0 H H H il
0 5 10 15 20 0 5 10 15 20
n n
g 04 g 04
z N=10 z N=20
§ 02 | N p=05 | § 02 | p=02 |
0 HHH HHH 0 HHHHHHHH
0 5 10 15 20 0 5 10 15 20
n n
T 04 = 04
z N=20 Z N=20
S o2 | p=05 | S o2 | p=06 |
) e ) e
0 5 10 15 20 0 5 10 15 20
n n

Example: observe /N decays of W,
number 70 which are W — v is a binomial r.v.,

P = branching ratio
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Poisson distribution

Consider binomial 7 in the limit

N — o0,
p— 0,
Eln| = Np —v.
We can show that 1 then follows the Poisson distribution:
I/n
f(n,v) = —e’ (0<n< )
!
En|=v
Vin|=v
= 04
i:; v=2
T o2t )l
; WMHHM
0 5 10 15 20
= 04
E\:: v=5
0.2 i
o Lol | H H Ey
0 5 10 15 20
= 04
i:; v=10
T o2t )l
0 HHHHHHHHHHHHH
0 5 10 15 20

n

Example: number of scattering events 1 with cross section &

found for a fixed integrated luminosity, where v = o / Ldt .

G. Cowan — Introduction to Statistics — CERN Summer Student Lectures



Uniform distribution

Consider a continuous r.v. £ with —o0 < < Q.

The uniform distribution is defined by

s a<z<p

flz;a,8) =177°

0 otherwise

Ele] = [ 2" de = Ya+B)

1
Vie] = [lo = sla+ B = do = (8 — o)’
I . :
08 3 n L
| a

N.B. For any r.v. & with cumulative distribution F’ (x),
y = F(x) is uniform in [0, 1].

Example: for 7 — Y, E7 is uniform in [Emim Emax}, with

Emin — %Eﬂ'(]— — B); Emax —

sEx(1+ 8)
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bExponential distribution

The exponential pdf for the continuous r.v. Z is defined by

_!
RS

fl@; &)= (>0

Example: proper decay time ¢ of an unstable particle,

1
f(t;T) = Ze T (T = mean life time)
T

Lack of memory (unique to exponential pdf):

[t —tolt > to) = f(t)
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(zaussian distribution

The Gaussian (or normal) pdf for the continuous r.v. Z is defined by

flz; p,0%) = #exp (—(x _ u)z)

V2702 202
Elx] = p N.B. Often 1, 02 denote
mean, variance of any r.v.,
V[QZ] = o2 not necessarily Gaussian.
’6\ T T T T T
;:- 06 — p=0, o=1
— ' -— - u:O, o=2
e p=1, o=1
04 .
0.2 | 1

Special case: 4t = 0, 0> =1  (‘standard Gaussian’)

o) = T 0w) = [ pla) do

If 1 is Gaussian with p, 027 then T — Yy

o follows ().
o

Examples: (almost) anything which is a sum of many random

contributions, often the case for measurement errors.
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I'he central limit theorem

For n independent r.v.s ; with finite variances o 2-2, otherwise

n
arbitrary pdfs, in limit 7 — 00, ¥y = > x; is a Gaussian r.v.

1=1
Ely = 3
v= i=1 Hi (As for all sums of
n independent r.v.s.)
Vlyl = X o;

For proof see e.g. GDC Ch. 10 using characteristic functions.

For finite 1, theorem is valid to the extent that sum is not

dominated by one (or few) terms.
Good example: velocity component v, of air molecules.

OK example: total deflection due to multiple Coulomb scattering.

(Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin gas layer.

(Rare collisions make up large fraction of energy loss, cf. Landau pdf.)
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Multivariate (Gaussian distribution

Multivariate Gaussian pdf for the vector r.v. & = (xl, e ,xn):

1 1 o
exp | = (& — i) V7 (E — i)

—

f(fa 7V) — (27T)n/2|V|1/2

f, ,LT are column vectors, fT, ﬁT are transpose (row) vectors.
Elz] = p
COV[JIZ', 517]'] — Vij

For n = 2, this is

f(x1, 295 pa, p2, 01,09, p) = 2

X exp {—2(1;2) [(ma—lm)? + (xQ_J—;ﬂy —2p <3710—1M1) (3:20_2#2”} 7

where p = COV[xl, CL’Q] / (0102) is the correlation coefficient.
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Chi-square (x~) distribution

The chi-square pdf for the continuous r.v. 2 is defined by

1
. _ n/2—1_-—z/2

n = 1,2,... = ‘number of degrees of freedom’ (dof)

20

. . . . 2
For independent Gaussian ;, 2 = 1, ..., n, means [;, variances 07,

2
Li — [y
z:Z( 2#)

n
1=1 O-Z

follows x? distribution with 1 dof.

Or for multivariate Gaussian x; with covariance matrix V;-j,
= —\T -1 /- — 9
zZ = (33 — ,u) V (QC — ,LL) follows x* pdf.

Example: goodness-of-fit test variable, especially in conjunction

with method of least squares.
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Cauchy (Breit-Wigner) distribution

The Cauchy pdf for the continuous r.v.  is defined by

1
ol 42

/(@)
This is a special case of the Breit-Wigner pdf,

1 /2
™ F2/4—|— (37 — 56'0)27

f(xa F,CC()) —

where parameters £y, I' = mass, width of resonance.

T o8 . : , , .
X Xy=0, =1
g - - Xg=2,T=1 i
0.6 r I .
E [33 ] — not well defined S Xg=0, T=2 X
f’ ‘l
o
04 r | |l |
V I:x] — & ’l |\
N B (I |\
0.2 B - \\ -
/’ \\
0 ey =~ T T iy
4 2 0 2 4

Lo = mode (most probable value)

[' = full width at half maximum

Example: mass of resonance particle, e.g. p, K™, qbo, C.

[' = decay rate (inverse of mean lifetime)
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Landau distribution

For a charged particle with 8 = v / C traversing a layer of matter
of thickness d, the energy loss /A follows the Landau pdf:

F(A:8) = 2¢(A),

]. o0 .
¢(N) = — ;" exp(—ulogu — Au) sin7u du,
T

1

¢
2rNpez’ps 7 d , I? exp(?)

T Mz A BY © = 2mec? 3272

(See L. Landau, J. Phys. USSR 8 (1944) 201;

W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.)

A

)

{A—g(logfﬁ—l—q@)

§

IN

5 (a)
2 4 ' — pB=04
Long ‘Landau tail’ _ | p-05
ong andau tal & o d - B=0.95
] g B=0.999
—> all moments diverge = 2
0 /. i e =
0 1 2 3 4

S
Mode (most probable value) i 3
sensitive to J3; i
—> particle i.d. '
W1 w100 10 1

By

G. Cowan — Introduction to Statistics — CERN Summer Student Lectures



The Monte Carlo method

What it is: a numerical technique for calculating probabilities

and related quantities using sequences of random numbers.
The usual steps:
(1) Generate sequence 71, T'g, - . - , Ty, uniform in [0, 1].

(2) Use this to produce another sequence Z1, 2, ..., Ty
distributed according to some pdf f () in which

we're interested. (N.B. Z can be a vector.)

(3) Use the & values to estimate some property of f(x), e.g.
fraction of & values with a < x < b gives /a b f(:C) dzx.

— MC calculation = integration (at least formally)
Usually trivial for 1-d: /a ’ f(x) dx obtainable by other methods.
MC more powerful for multidimensional integrals.

MC x values = ‘simulated data’

— use for testing e.g. statistical procedures.
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Random number generators

Goal: uniformly distributed values in [0, 1].
Toss coin for e.g. 32 bit number ... (too tiring).
— ‘random number generator’

= computer algorithm to generate 71,79, ..., Ty.
Example: the multiplicative linear congruential generator (MLCG)

niv1 = (an;) modm,  where

n; = integer
a = multiplier
M = modulus

No = seed
N.B. mod = modulus (remainder), e.g. 27 mod 5 = 2.
The n; follow periodic sequence in [1,m — 1].

Example (cf. Brandt): a = 3, m =7, ng = 1:

ny = (3-1)mod7 = 3
ny = (3-3)mod7 = 2
ny = (3-2)mod7 = 6
ny = (3-6)mod7 = 4
ns = (3-4)mod7 = 5

ng = (3-5)mod7 = 1 < sequence repeats!

Choose @, m, to obtain long period (maximum =m — 1 ).
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Random number generators (continued)

n.
r: = — arein [0,1] (0 and 1 excluded), but are they ‘random’???
m

Choose @, m, so that the 7; pass various tests of randomness:
Uniform distribution in [0, 1]

All pairs independent (no correlations)

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests
a = 40692
m = 2147483399

Test with 10000 generated values:

250

+ T T T T s T e
pd L T T
200 F 08 ot T e
150 0.6
100 0.4 i itiin b
50 r 0.2 , :
0 | | | | 0 ‘ | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Far better algorithms available e.g. RANMAR, period & 2 X 1043,
For more info see e.g.
F. James, Comput. Phys. Commun. 60 (1990) 111;

Brandt, chapter 4.
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The transformation method

Given 71,79, . . . , T, uniform in [0, 1], find 1, xo, . .., Ty

which follow f(x) by finding a suitable transformation :C(’I“)

S 1.25 B T ,| T T T ] 8 0.2 T T T T T
()] r e
! ,
1 i 015 x(") -
!
0.75 ]
01 ]
0.5 -
005 ]
0.25 ]
0 Il Il Il 0 Il Il Il
0 025 05 075 1 125 15 0 25 5 75 10 125 15
r X

Require: P(?“ < 7“’) = P(iU < 37(7"/»
ie. [1g(r)dr =1 = ["U) f(a')da' = F(a(r"))

oo

That is,

set F(:C(?“)) = 7 and solve for QC(’I“)
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Example of the transformation method

1
Exponential pdf: f(x;&) = “em/E (x > 0)

¢ >

1
Set /Oa7 —e_x,/E dx’ = r and solve for :C(?“)

§
= z(r) = —=&log(l —r) (z(r) = —&log T works too.)

200 ﬂJWWJTHIUMU%Jﬂ“ 300
150 | 800 -
100 400 |-
50 | 200 |-
0 | 0 |
0 0.5 w 0 > 4
. x(r)
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The acceptance-rejection method (von Neumann)

()

04 r

Enclose the pdf in a box: 03 |

02 r

01 r

(1) Generate a random number &, uniform in [:I:min, :I:max], ie.
T = Tmin T T1 (:IJmaX — :Cmin) where 71 1s uniform in [0, 1].
(2) Generate a second independent random number u uniformly
distributed between 0 and finax, i.e. 4 = 79 fmax.
(3) Ifu < f(x), then accept . If not, reject T and repeat.

= e A @
Example: I e e T

g (b)
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Monte Carlo event generators

+
u
Simple example: e \

ete” — utu” \9
R

Generate 6 and ¢:

f(cos0; Apg) o (1 + 3 App cosd + cos® )
1

o

g9(®)

Less simple examples:

ete”™ — hadrons: JETSET (PYTHIA)
HERWIG
ARIADNE

pp — hadrons: ISAJET
PYTHIA
HERWIG

ete” — WW: KORALW
EXCALIBUR
ERATO

Output = ‘events’, i.e. for each event, a list of final state

particles and their momentum vectors.
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Monte Carlo detector simulation

Takes as input the particle list and momenta from generator.

Simulate detector response:
multiple Coulomb scattering (generate scattering angle)
particle decays (generate lifetime)
ionization energy loss (generate A)

EM /hadronic showers

production of signals, electronics response

Output = simulated raw data

— input to reconstruction software (track finding/fitting, etc.)
Uses:

Predict what you should see at ‘detector level’ given a certain

hypothesis for ‘generator level’. Compare with the real data.

# events found

Estimate various ‘efficiencies’ =
# events generated

Programming package: GEANT
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Lecture 1 summary

1. Probability

Definition: Kolmogorov axioms + conditional probability
Interpretation: frequency or degree of belief

Bayes’ theorem

2. Random variables

Probability density functions (pdf), e.g. f(x)

Cumulative distribution functions, £ (:C) = /_xoo f(:C,) dz’

Joint pdf, e.g. f(z,y)

3. Expectation values
Mean, variance, covariance
Error propagation
4. Probability functions and densities:

Binomial, Poisson, uniform, exponential, Gaussian (—CLT),
chi-square, Cauchy, Landau

5. The Monte Carlo method

Random number generators

The transformation method

The acceptance-rejection method
Uses of MC in High Energy Physics
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