Statistics course outline

Lecture 1

1. Probability

2. Random variables, probability densities, etc.
3. Brief catalogue of probability densities

4. The Monte Carlo method

Lecture 2

1. Statistical tests

2. Fisher discriminants, neural networks, etc.
3. Goodness-of-fit tests

4. The significance of a signal

5. Introduction to parameter estimation

Lecture 3

1. The method of maximum likelihood (ML)
2. Variance of ML estimators
3. The method of least squares (LS)

4. Interval estimation, setting limits
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Hypotheses, test statistics

Suppose the result of a measurement is = (5131, Ceey :I:n)

+

e.g. events from e"e™ collisions; for each event measure

I1 = number of charged particles produced

I9 = mean P | of particles

T3 = number of ‘jets’ (according to some algorithm)

X4

Z follows some joint pdf in an n-dimensional space, which depends
on the type of event produced, i.e. ete”™ — ¢q, ete™ — WW, etc.
That is, the joint pdf f(f) is specified by a certain

HYPOTHESIS

i.e. predicted probability densities f(f |H 0), f(f |H 1), etc.
(Note sloppy but traditional notation: usually Hy, Hy, ...not r.v.s.)

Simple hypothesis: f(f) completely specified,

Composite hypothesis: form of f(f ; 6’) given, parameter @ unknown.

Usually awkward to work with multidimensional &,
= construct test statistic of lower dimension (e.g. scalar), t(f):
compactify data,

try not to lose ability to discriminate bewteen hypotheses.

The statistic ¢ then has pdfs g(t|Hy), g(t|H1), ...
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Critical region, errors of 1st and 2nd kind

Consider a test statistic ¢ following g(t|H 0), g(t|H 1),

g(t)

accept Hy i reject Hy

15

05

Define a critical region where t is not likely to occur if Hy is true,
e.g. for the case above, t > t.yut.

If observed value tqps is in critical region, reject Hy, otherwise ‘accept’.

Probability to reject Hy if it is true (error of 1st kind):

o= /t t|H 0 dt (significance level)

Probability to accept Hy if H1 is true (error of 2nd kind):

B = /_t?s g(t|H1) dt (1 — 8 = power)
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An example with particle selection

Suppose we obtain 1 energy loss measurements for a particle in a
drift chamber, construct £ = truncated mean of the measurements,

and suppose we know the particles are either electrons or pions:

g(t)

accept Hy i reject Hy
15 4

Hy = electron (signal)
H{ = pion (background)

05 r

Select electrons by requiring ¢ < Teyt. The selection efficiencies are:

e = [[Mg(tle)dt =1 —a

ex = [ g(t|m)dt = B

Loose cut: most e accepted, lots of m background

Tight cut: low signal efficiency, pure sample
Fractions of e, # may be unknown; ¢ follows

f(t;ae) = aeg(tle) + (1 — ae)g(t|m)

— estimate @ (for now assume Qe, A; = 1 —ae known)
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Purity of selected sample

For a measured value ¢, what is the probability to be e/7?

- ae g(tle)
M= acgttle) + arglilm
(Bayes’ theorem)
h(lt) = ar g(t|r) '
aeg(tle) + arg(t|m)

Bayesian: degree of belief that this particle is e or 7

Frequentist: fraction of particles at given ¢ which are e/7

— here both approaches make sense

Often want purity of selected sample:
pe — P(e|t < tcut)

number of electrons with ¢ < Teyt

number of all particles with T < f¢yt

ffeat aog(tle)dt
18 (acg(tle) + (1 — ae)g(t|m))dt

e (elt) f(£) di
gl () dt

— electron probability averaged over interval (—OO, tcut]
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The Neyman—Pearson lemma,

Consider a multidimensional test statistic £ = (t1, -+ tm);
hypotheses H (‘signal’) and H; (‘background’).

What is the optimal choice of the critical region (i.e. cuts)?

The Neyman-Pearson lemma states: to get the highest purity for
a given efficiency, (i.e. highest power for a given significance level),

choose the acceptance region such that

g(ﬂHo)
g(t]Hy)

where ¢ = constant which determines the efficiency.

> C,

(For a proof see Brandt Chapter 8.) Value of ¢ left open; choose

this depending on what efficiency you want.

Equivalently, the optimal scalar test statistic is

_ g(t] Ho)
g(ﬂHﬁ’

called the likelihood ratio for simple hypotheses Hy and Hj.

T

Requiring > ¢ gives maximum purity for a given efficiency.

N.B. any monotonic function of 7 is just as good.
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Constructing a test statistic

Example: Hy = ete™ — WW — hadrons (usually four jets)
H; =ete™ — qg — hadrons (usually two jets)

For each event measure &' = (:Cl, ce ,:Cn).

According to Neyman—Pearson, to select WWs we should cut on

. f(Z|Hp)
@ = @y

but we need to know f(Z|Hy) and f(Z|Hy).

In practice, get these from Monte Carlo event generator:

Generate events, for each, obtain Z and enter into
n-dimensional histogram. If e.g. M bins per component,

total number of cells in Z-space = M™"

Approximate f(f |H ) by probability to be in corresponding cell,

i.e. determine M"™ parameters. But 1 is potentially large!
= prohibitively large number of cells to populate with MC data.

Compromise solution:

Make Ansatz for form of ¢(Z) with fewer parameters;
determine the parameters (e.g. using MC) to give best

discrimination between Hy and H.
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Linear test statistic

Ansatz:  £(T) = é R
A choice of @ gives certain pdfs g(t|Hy), g(t|Hy).
Choose the @; to maximize ‘separation’ between g(t|Hy), g(t|Hy).
— Must define ‘separation’.
We have the expectation values and covariances,
()i = | i f (7| Hy) d3,
(Vi)ij = J(x — pr)i (x — ) f(Z|Hy) dZ,
k=0,1 (hypothesis),
t,7=1,...,m  (component of ).
Similarly for mean and variance of (),
r = [ 4(Z) (@ Hy) d = d"ji.

Y2 = [(t(Z) — 7)* f(Z|Hy) dT = @' V@

We should require:
large |7'0 — 7'1|,

small 2(2), Z% (pdfs tightly concentrated about their means).
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Linear test statistic (continued)

Fisher defines as a measure of separation

N (7'0—7'1)2
N@) =" wn

The numerator of J (C_L’) is

n

(10— 1) = ) aia;(po — p1)i(fo — p1);

& B _—*TB—»‘
—'Zlaiaj ij — a a.
4L)=

The denominator is

23—1—22 — _Z"’:laz-aj(%Jer)ij —alwWa.

LJ=

o . a’ Ba separation between classes
This gives J (a) = S s = : —
a' Wa separation within classes

aJ — — —
Set ——— =0 = a@oc W io— ji1)
(‘9&@-
This defines Fisher’s linear discriminant function,

determined up to a scale factor for @.

R.A. Fisher, Ann. Eugen. 7 (1936) 179.
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Neural networks (1)

Used in neurobiology, pattern recognition, financial forecasting . ..

here, neural nets are just a type of test statistic.

Suppose we take t(f) to have the form

t(Z)=s (ao + % a,-xz-)

1=1
where s(u) = (1 + e_u)_l (the ‘activation function’)
This is the single-layer perceptron.

8() is monotic = equivalent to linear t(f)

X1
O t(x)
T
output node (could
Xn be more than one)

T

input layer
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Neural networks (2)

Generalize this to the multilayer perceptron:

hidden layer

— m —
The output is defined by t(:c) =S (ao + 'Zl aihi(x)) )
1=

where the h; are functions of the nodes in the previous layer,

hz(f) =S (’wio + f:l wz-jxj) .
]:

a;, W;; = weights (connection strengths)

Easy to generalize to arbitrary number of layers.

Feed-forward net: values of a node depend only on earlier layers,
usually only on previous layer — ‘network architecture’

More nodes — neural net gets closer to optimal t(f),

but more parameters need to be determined.
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Neural networks (3)

Parameters usually determined by minimizing an error function,
€ = Eol(t —t? + Ey[(t — tW),

where t(o), t() are target values, e.g. 0 and 1 for logistic sigmoid,

cf. least squares principle with Fisher discriminant.

In practice, replace expectation values by averages of training data

from Monte Carlo. (Adjusting parameters = network ‘learning’.)

In general this can be tricky; fortunately, programs like JETNET

do it for you, e.g. with ‘error back-propogation’.

For more information see

L. Lonnblad et al., Comput. Phys. Commun. 70 (1992) 167,

C. Peterson, et al., Comput. Phys. Commun. 81 (1994) 185;

C.M. Bishop, Neural Networks for Pattern Recognition,
Clarendon Press, Oxford (1995);

John Hertz, et al., Introduction to the Theory of Neural
Computation, Addison-Wesley, New York (1991);

B. Miiller et al., Neural Networks: an Introduction, 2nd edition,

Springer, Berlin (1995).
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Neural networks (4)

An example with WW event selection

(Garrido, Juste and Martinez, ALEPH 96-144)

The input variables:

Shaded histograms: WW (signal)
Open histograms: ¢q (background)
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G. Cowan — Introduction to Statistics — CERN Summer Student Lectures



Choosing the input variables

Why not use all of the available input variables?

Fewer inputs — fewer parameters to be adjusted,

— parameters better determined for finite training data.

Some inputs may be highly correlated — drop all but one.

Some inputs may contain little or no discriminating power

between the hypotheses — drop them.

NN exploits higher moments of joint pdf f(Z|H),

but these may not be well modeled in training data.

— better to have simpler t(f) where you can

‘understand what it’s doing’.

Recall that the purpose of the statistical test is usually
to select objects for further study; e.g. select WW events,

then measure their properties (e.g. particle multiplicity).

= avoid input variables that are correlated with the
properties of the selected objects which you want to study:.

(Not always easy; correlations may not be well known.)
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Testing goodness-of-fit

Suppose hypothesis H predicts f(f |H ) for some vector
of data & = (5(,‘1, e ,:Ijn).
We observe a single point in Z-space: Zobs.

What can we say about the validity of A in light of the data?

— Decide what part of Z-space represents less compatibility with

H than does the observed point Zops. (Not unique!)

Z; Z more compatible with H

A
//:— the observed data, fobs

_’
X less com-

patible with H < (hyper)surface of equal com-

patibility between £ and H

> T j
Usually construct test statistic t(f) whose value reflects

level compatibility between T and H, e.g.

low t — data more compatible with H:
high ¢ — data less compatible with H .

Since pdf f(f |H ) known, the pdf g(t|H ) can be determined.
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P-values

Express ‘goodness-of-fit’ by giving the P-value (also called

observed significance level or confidence level):

P = probability to observe data & (or t(f)) having equal
or lesser compatibility with H as Zops (or t(fobs))

This is not the ‘probability’ that H is true!

In classical statistics we never talk about P (H )
In Bayesian statistics, treat H as a random variable;

use Bayes’ theorem (here symbolically) to obtain

P(t|H)r(H)
PUWD = pa1a) w () di

where 7T (H ) is the prior probability for A ; normalize
by integrating (or summing) over all possible hypotheses.
For now stick with classical approach, i.e. our final answer

is the P-value.

N.B. No alternative hypotheses mentioned.

N.B. P-value is a random variable. Previously considered

significance level was a constant, specified before the test.

If H true, then (for continuous &) P is uniform in [0, 1].
If H not true, then pdf of P is (usually) peaked closer to 0.
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An example of a goodness-of-fit test

Probability to observe 1y, heads in /V coin tosses is:

N n .
| Py (1 - ph)N h

f(nh;p}hN) — TLh'(N . nh)-

Hypothesis H': the coin is fair (p, = py = 0.9)
Take as goodness-of-fit statistic £ = |nh — 5

We toss the coin /N = 20 times and get 17 heads, i.e. tops = 7.

Region of f-space with equal or lesser compatibility:
t>7
P-value = P(ny = 0,1,2,3,17,18,19 or 20) = 0.0026

So does this mean H is false? P-value does not answer this
question; it only gives the probability of obtaining such a level of

discrepancy (or higher) with [ as that observed.

)

P-value = probability of obtaining such a bizarre result ‘by chance’.

A philosophical objection (but not a real problem):

Could have defined experiment to end after at least 3
heads and tails; in ours this happened to occur after 20 tosses.

In such an experiment, the P-value is 0.00072!

Pragmatist’s solution: ‘repetition of experiment’ taken to mean

repetition with same number of trials per experiment.
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The significance of an observed signal

Suppose we observe 1 events; these can consist of:

Ny events from known processes (background)

N events from new processes (signal)

If ny,, ng are Poisson r.v.s with means 1, Vg, = N = Ng + Ny,
is also Poisson, mean vV = g + 1, (cf. SDA Chapter 10):

(VS + Vb)n e—(Vs+Vb)

P(n7 I/Sayb) — |

Suppose 1, = 0.5 and we observe Ngps = 9.

Should we claim evidence for a new discovery?
Hypothesis H: s = 0, i.e. only background present.
P-value = P ('n > nobs)

o0

= > Pnvs=0,1n)
N=MNghs
:]_ — nOti_ly_}?e_Vb
n=0 TL'
=1.7x107*

(# P(vs = 0)))
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The significance of a peak

Suppose in addition to counting events, we measure X for each.

N(X)

— data

8 [~ expected background 1 <« Histogram of observed and

expected data. Each bin

is a, Poisson variable.

ar-an

0 5 10 20

X

In the 2 bins with peak, 11 entries found, v, = 3.2,
P(n> 111 =3.215=0) =5.0x 107*

But. .. did we know where to look for the peak?
— give P(n > 11) in any 2 adjacent bins.
Is the observed width consistent with the expected & resolution?
— take x window several times expected resolution
How many bins X distributions have we looked at?
— look at a thousand of them, you’ll find a 1073 effect.
Did we adjust the cuts to ‘enhance’ the peak?
— freeze cuts, repeat analysis with new data.

How about the bins to the sides of the peak ... (too low!)

Should we publish???
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Pearson’s X2 test

Test statistic for comparing observed data 77 = (nl, ) N)
to predicted expectation values I/ = (Vl, ce e I/N):
N (n; — v;)?
2 ) 1
X =2
1=1 V;

If n; are independent Poisson r.v.s with means v/;,
and all ; not too small (rule of thumb: all v; > 9),
then X2 will follow the chi-square pdf for N dof.
The observed X2 then gives a P-value:

(0.@)
P=[> f(2N)dz
where f(z N ) is the chi-square pdf for NV degrees of freedom.

Recall for chi-square pdf, F/[z] = N

)

— often give X2 / N as measure of level of agreement

Better to give X2, N separately ...
x? =15 N = 10 — P-value = 0.13
x? =150, N = 100 — P-value = 9.0 x 1074

N
If Nyt = 2 My is fixed, n; are binomial, p; = V; / Ntot,
1=1
2
X (ni = pin)
2 7 110tot
X = X

=1 PiNtot

will follow chi-square for N — 1 dof (all p;nter >> 1).
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Example of X2 test

10 T T T

N(X)

— data

8  --- expected background 7 < This giVQS

=X (ni — v3)?
1=1 V;

= 29.8 for N = 20 dof.

But. .. many bins have few (or no) entries,

— here X2 will not follow chi-square pdf.

Pearson’s X2 still usable as a test statistic, but
to compute P-value first get f(X2) from Monte Carlo:
Generate n; from Poisson, mean v, ¢ = 1,..., IV,

compute X2, record in histogram,

repeat experiment many times (here 10°).

Nf\ 01 T T T T T
>
= —— chi-square pdf for N =20
0.08 | --- pdffrom Monte Carlo .
vos | Using pdf from MC gives
0.04 F —  P-value i .
0oz | ] Chi-square pdf would give

30 40 50 60
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Parameter estimation: general concepts

Consider 1 independent observations of an r.v. &,

— sample of size

Equivalently, single observation of an n-dimensional vector:
T = (331,...,33”)

The x; are independent = joint pdf for the sample is

fsample(Z) = f(x1) f(22) - - - f(2n)

Task: given a data sample, infer properties of f(a:)

— construct functions of the data to estimate various

properties of f(a:) (mean, variance, ...)

Often, form of f(:c) hypothesized, value of parameter(s) unknown

— given form of f(x, 9) and data sample, estimate 6

Statistic = function of the data

Estimator = statistic used to estimate some property of a pdf

notation: estimator for 8 is 6 (hat means estimator)

AN

Estimate = an observed value of an estimator (often: Hobs)

N.B. é(f) is a function of a (vector) random variable,

= it is itself a random variable, characterized by a pdf g(9>

with an expectation value (mean), variance, etc.
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Estimators

How do we construct an estimator € (f)7

There is no golden rule on how

to construct an estimator.

Construct estimators to statisfy (in general conflicting) criteria.
As a start, require consistency: lim 68 = 6

n—aoo

i.e. as size of sample increases, estimate converges to true value:
for any € > 0, nll_}H(}OP(w — 0] >¢)=0.

N.B. convergence in the sense of probability, i.e. no guaranty that

any particular O, will be within any given distance of 6.
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Properties of estimators

Consider the pdf of é for a fixed sample size N:

0.6

05

9(8;8,n)

04 r

0.3

0.1 r

-2 0 2 4

8
N.B. g(é; 6,n) depends on true (unknown!) parameter 6.

We don’t know 6, just a single value Gps.

Properties of g(é; 6, n):

A

variance V0] = o (045 = ‘statistical error’)

2
5-

bias b = F [é] — 0 (‘systematic error’; depends on 1)
1 1

For many estimators we will have 05 ¢ —=, box —.
VN n
Sometimes consider mean squared error:
MSE = V[4] + b2
In general, there is a trade-off between bias and variance,

— often require minimum variance among estimators with O bias.

G. Cowan — Introduction to Statistics — CERN Summer Student Lectures



Estimator for the mean (expectation value)

Consider n measurements of r.v. , Z1,...,Z,, we want an

estimator for 4 = I [a:] Try arithmetic mean of the ;:

. 1 n
=T = — xT; the sample mean
H n =1

If V|| finite, T is a consistent estimator for 4, i.e.
_ 1 n
for any € > 0, nll_)I%OP ﬁzglxz —u >e|l=0.
This is the Weak Law of Large Numbers. Compute expectation value:

1 1 1 n

! {n = n i=1 =i n z'§1'u s
— T 1s an unbiased estimator for (& . Compute variance:
I n 1 n
z] = Elz7] — (Elz]) o) | b ) Rl
1 2
— 2 2.7]21 Blziz] — p
L9 2 2 | 2 , o
= S| =)l +o%) - pt =

where 02 is the variance of , and we used

Elz;x;] = p? fori # j and E[z7] = p* + o2,
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Estimator for the variance

Suppose mean [ and variance V[x] — 02 both unknown.

Estimate 02 with the sample variance:

1 =n
— > (z; —T)* =

2 =2
n —1i=1 (x a:)

n—1
Factor of 1/(n — 1) included so that E[SQ] = 02 (i.e. no bias).
Ifu= E[IIJ] is known a priori,

1 n -
5= gz‘zl(xi —p)=a?—p

2

is an unbiased estimator for 02.

Computing the variance of s? (long calculation!) gives

1 n—3
VIt = (u4 - 1u3)

where (i3, is kth central moment (e.g. fy = 02).

The ptf, can be estimated using

1 n ok
n—1 51(% - 7)

mrp —
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Estimator for covariance and correlation coefficient

To estimate the covariance V;Cy = COV[x, y], use

_ 1 n n

Voy=_—7 (@i —2)(yi —y) = (zy —zy)

which is unbiased.

. . Vay
For the correlation coefficient p = , use
O30y
_ Ve S (@ — Z)(yi — 9)

N 1/2
Sy (E?:1(39j —T)? - i (Y — y)2> /

T has a bias which goes to zero as 1 — 0Q.

In general, pdf g(T; P, n) is complicated; for Gaussian &, v,

E[T] =p— :0(12;:0 ) 4 O<n—2)

V= (1 + O™

(cf. R.J. Muirhead, Aspects of Multivariate Statistical Theory,
Wiley, New York, 1982.)
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Lecture 2 summary

e Statistical tests: test whether data stand in agreement with
predicted probabilities, i.e., hypotheses. Critical region, significance
level, power, (related to efficiency, purity).

e Fisher discriminants, neural networks, etc.: reduce data
vector & to a single (or few) component function ¢(&). Compactify
data while retaining ability to discriminate between hypotheses.

e Goodness-of-fit tests: quantify level of agreement between data
and hypothesis with P-value.

e The significance of a signal: often give P-value of hypothesis
that only background present.

e Introduction to parameter estimation: try to minimize bias,
variance. Simple estimators for mean, variance, covariance.
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