An overview of Cosmology

CERN Student Summer School
9-13 August 2004
Julien Lesgourgues (LAPTH, Annecy)

What is Cosmology?

- □ Astrophysics ⇒ detailed description of « small » structures
- □ Cosmology ⇒ Universe as a whole
 - ➤ Is it static? Expanding?
 - ➤ Is it flat, open or closed?
 - > What is it composed of?
 - What about its past and future ?

□ Part I: the expanding Universe

- > Hubble law
- Newtonian gravity
- General relativity
- > Friedmann-Lemaître model
- □ Part II: the standard cosmological model
 - > Hot Big bang scenario
 - Cosmological perturbations
 - Cosmological parameters
 - ➤ Inflation & Quintessence

Geometry and abstraction ...

Concrete predictions, results, observations!!

Part I: The Expanding Universe

Part I: (1) - The Hubble Law

- □ First step in understanding the Universe...
 - > first telescopes: observation of *nebulae*
 - > 1750 : T. Wright : Milky way = thin plate of stars?
 - > 1752 : E. Kant : nebulae = other galaxies?
- □ Galactic structure not tested before... 1923!

> 1842 : Doppler effect for sound and light

- ➤ 1868 : Huggins finds redshift of star spectral lines
- ➤ 1868 1920 : observation of many redshift of stars and nebulae
 - random distribution
 - late observations : $excess \ of \ z > 0 \ for \ nebulae$

□ 1920's : Leavitt & Shapley :

➤ cepheids ⇒ period / absolute luminosity relation

absolute luminosity

apparent luminosity

$$1 = dL/ds = L/(4\pi r^2)$$

measurement of distances of stars inside the Milky Way (~80.000 lightyear)

- □ 1923 : Edwin Hubble :
 - > 2,50 m telescope at Mount Wilson (CA)
 - > cepheids in Andromeda
 - distance of nearest galaxy = 900.000 lyr
 (in fact 2 Mlyr)
 - *⇒ first probe of galactic structure* !!!!
 - > so : excess of redshifted galaxies

①

Universe expansion???

□ IN GENERAL : expansion ⇒ center

- □ Against « cosmological principle » (Milne):
 - Universe homogeneous ...
 - no privileged point!

QUESTION: is any expansion a proof against homogeneity?

ANSWER: not if $\mathbf{v} = \mathbf{H} \mathbf{r} \Leftrightarrow linear expansion$

... like infinite rubber grid stretched in all directions ...

Proof that *linear expansion* is the only possible homogeneous expansion :

 $\mathbf{v}_{\mathbf{B}/\mathbf{A}} = \mathbf{v}_{\mathbf{C}/\mathbf{B}}$

- $\mathbf{v}_{\mathbf{C}/\mathbf{A}} = \mathbf{v}_{\mathbf{C}/\mathbf{B}} + \mathbf{v}_{\mathbf{B}/\mathbf{A}} = 2 \mathbf{v}_{\mathbf{B}/\mathbf{A}} \Rightarrow \text{linearity}$

□ 1929: Hubble gives the first *velocity / distance*

 $H = v / r = 500 \text{ km.s}^{-1}.\text{Mpc}^{-1}$ for Hubble ($\cong 70 \text{ km.s}^{-1}.\text{Mpc}^{-1}$ for us) 1 Mpc = $3.10^6 \text{ lyr} = 3.10^{22} \text{ m}$

⇒ THE UNIVERSE IS IN HOMOGENEOUS EXPANSION

□ 1929 : starting of modern cosmology ...

Remark: what do we mean by

« the Universe is homogeneous »

(cosmological principle)?

> example of structure homogeneous *after smoothing*:

- ➤ local inhomogeneities ⇒ scattering

Part I: (2) – Universe expansion from Newtonian gravity

- on cosmic scales, only gravitation
- □ Newton's law = limit of General Relativity (GR)

```
when v \ll c
F = G m_1 m_2 / r^2
OR | speed of object | speed of liberation
```

- > Newton's law should describe expansion at small distances with v = H r << c ...
- but historically, GR proposed the first predictions / explanations !!!

□ Newton: finite Universe

> but how to deal with infinity?

□ Gauss theorem:

$$\dot{\mathbf{r}} = -G \, \mathbf{M}_{\mathbf{r}} / \mathbf{r}^2$$

$$M_r = constant = (4/3) \pi r^3 \rho_{mass}$$

$$\Rightarrow$$
 $\dot{\mathbf{r}}^2 = 2 G M_r / r - k$

$$= (8/3) \pi G \rho_{\text{mass}} r^2 - k$$

Newtonian expansion law : $(\dot{r}/r)^2 = (8\pi G/3) \rho_{mass} - k/r^2$

- $\rho_{\text{mass}}(t) \propto r(t)^{-3}$
- > same motion as a two-body problem :

- $ightharpoonup k \neq 0$ \Rightarrow non-homogeneous expansion ???
- $ightharpoonup v = H r \text{ and } v << c \Rightarrow r < R_H \equiv c / H$

GRAVITY / INERTIA

Part I: (3) – General Relativity and the Friedmann-Lemaître Universe

Newtonian gravity

invariant speed of light

General Relativity

(Einstein 1916)

- \Rightarrow no more Φ_{grav} (matter distribution $\Leftrightarrow \Phi_{\text{grav}} \Leftrightarrow \mathbf{E} = \nabla \Phi_{\text{grav}}$)
- \Rightarrow three basic principles :
 - 1) space-time (t,x,y,z) is curved
 - 2) curvature \Leftrightarrow matter
 - 3) *free-falling bodies* follow *geodesics*

1) how can we define the *curvature*:

- of a 2-D surface ?
 - embedded in 3D
 - stay in 2D, and use angles :

• stay in 2D, and use a scaling law : $dl(x_1,x_2)$

ex: sphere projected on ellipse, $dl(\theta)$

- > of 3-D space?
 - embedded in 4D: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = R^2$
 - stay in 3D, but provide a scaling law, like on a planisphere: dl(x₁,x₂,x₃)
- > of 4-D space-time?
 - one more dimension
 - time different from space (special relativity: -+++) intuitive representations:

OR

2) curvature \Leftrightarrow matter:

mathematical formulation = Einstein equation

3) free-falling bodies follow geodesics

feel only gravity
(not E.M., etc.)
e.g. galaxies, light...

given one point and one direction

 \Rightarrow one single line such that :

 \forall A, B, [AB] = shortest trajectory

• example 2 : gravitational lensing :

A sees an image of C lensed by B:

NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08

□ Newtonian gravity versus G.R.:

two different theories of gravity, i.e. two ways of describing how the presence of matter affects the trajectories of surrounding bodies...

- applying G.R. to the Universe: some history
 - > 1916: Einstein has formulated G.R.
 - ➤ 1917 : Einstein, De Sitter try to build the first cosmological models (PREJUDICE : STATIC / STATIONNARY UNIVERSE)

```
> 1922 : A. Friedmann (Ru)
```

> 1927 : G. Lemaître (B)

➤ 1933 : { Robertson, Walker (USA)

investigate most general

HOMOGENEOUS, ISOTROPIC,

NON-STATIONNARY

solutions of G.R. equations

- > 1929 : Hubble's law (first confirmation)
- > 1930-65 : accumulation of proofs in favour of FLRW
- > 1965 : CMB discovery : full confirmation

basic principles of G.R.	FLRW solution
space-time is <i>curved</i>	??????
free-falling objects follow geodesics	???????
curvature caused by / related to matter	??????

summary of the situation :

NEWTON

 \Rightarrow matter distribution $\Leftrightarrow \Phi_{\text{grav}} \Leftrightarrow$ forces changing the trajectories

General Relativity (GR)

- \Rightarrow three basic principles :
 - 1) space-time (t,x,y,z) is curved
 - 2) free-falling bodies follow geodesics
 - 3) curvature ⇔ matter

Friedmann-Lemaitre model = application of GR to homogeneous Universe

1) the *curvature* of the FLRW Universe:

- Universe space-time (t,x,y,z) curved by its *own* homogeneous matter density $\rho(t)$
- ► HOMOGENEITY ⇒ decomposition of curvature in :
 - spatial curvatureof (x,y,z) at fixed t3-D space is maximally symmetric :

2. 2-D space-time curvature

of $(t,x) \Leftrightarrow (t,y) \Leftrightarrow (t,z)$ accounts for the expansion

□ scale as a function of coordinates?

- \triangleright COMOVING COORDINATES (t, r, θ , ϕ)
- > for Euclidian space:

$$dl^2 = dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2)$$

for
$$FLRW$$
:
 $dl^2 = a^2(t) \left[\frac{dr^2}{(1-k r^2)} + r^2 (d\theta^2 + \sin^2\theta d\phi^2) \right]$

- $a(t) \equiv \text{scale factor} \Rightarrow 2\text{-D space-time curvature}$
- k ⇒ spatial curvature

$$-k=0$$
: FLAT

$$-k > 0$$
: CLOSED, $R_C(t) = a(t) / k^{1/2}$, $0 \le r < 1 / k^{1/2}$

$$R_C(t) = a(t) / k^{1/2}$$

$$0 \le r < 1/k^{1/2}$$

$$-k < 0 : OPEN,$$
 $R_C(t) = a(t) / (-k)^{1/2}$

$$R_C(t) = a(t) / (-k)^{1/2}$$

2) the geodesics in the FLRW Universe

photons: v = c Ultra-relativistic ordinary matter: v << c Non-relativistic (e.g. galaxies)

1) non-relativistic matter:

$$dl = 0 \Rightarrow (r, \theta, \phi) = constant$$

- galaxies are still in coordinate space ...
- ... but all distances are proportional to a(t)
 - a(t) gives the expansion between galaxies (although they are still !!!)
- like an inflated rubber balloon with points drawn on its surface ...

2) Relativistic matter: straight line in 3-D space, dl = c dt

$$\Rightarrow c^{2}dt^{2} = a^{2}(t) \left[\frac{dr^{2}}{(1-k r^{2})} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$
EQUATION OF PROPAGATION OF LIGHT

• So $\Delta 1 = c \Delta t$ is *WRONG*:

- ⇒ « bending of light in the Universe »
 (one of the two most fundamental equations in cosmology)
- ⇒ various important consequences ...

definition of the past light-cone :

- > in Euclidian space:
 - $\theta = constant$
 - $r_e = c (t_0 t_e)$
- > in Friedmann universe:
 - $\theta = constant$

$$\int_{r_e}^{0} \frac{-dr}{\sqrt{1 - kr^2}} = \int_{t_e}^{t_0} \frac{c}{a(t)} dt$$

$$\frac{dr}{dt} = -\frac{c}{a(t)} \frac{(1-kr)^{1/2}}{a(t)}$$

observable consequences of propagation of light equation:

> the redshift:

$$z = \Delta \lambda / \lambda = \lambda_0 / \lambda_e - 1$$

$$z = a(t_0) / a(t_e) - 1$$

- remark 1:
 - *Newtonian* : $z = v / c \le 1$
 - *G.R.* : no limit, as observed ...

remark 2: at short distance, we can recover the *Hubble law* (z = v/c = Hr/c)

$$t_0 - t_e = dt = dl / c$$

• then:
$$z = \frac{a(t_0)}{a(t_0 - dt)} - 1 = \frac{1}{1 - \frac{\dot{a}(t_0)}{a(t_0)}dt} - 1 = \frac{\dot{a}(t_0)}{a(t_0)}dt = \frac{\dot{a}(t_0)}{a(t_0)}\frac{dl}{c}$$

• so : Hubble parameter =
$$H(t) = \frac{\dot{a}(t)}{a(t)}$$
 (H₀ = 70 km.s⁻¹.Mpc ⁻¹)

2) the angular diameter-redshift relation

 $d\theta$

• Euclidian space:

$$dl = r d\theta$$
 with $r = v/H = z c/H$

• *G.R.* :

$$dl = a(t_e) r_e d\theta$$
 with r_e from

$$dl = a(t_e) r_e d\theta$$
 with r_e from
$$\int_{r_e}^{0} \frac{-dr}{\sqrt{1 - kr^2}} = \int_{t_e}^{t_0} \frac{c}{a(t)} dt$$

if dl is known, measurement of $(d\theta, z) \Rightarrow k$, a(t)

- CLOSED UNIVERSE: objects seen under larger angle
- > OPEN UNIVERSE : objects seen under smaller angle

3) the luminosity distance-redshift relation

apparent luminosity L absolute luminosity

• Euclidian space: $l = \frac{L}{4\pi r^2}$

$$l = \frac{L}{4\pi r^2}$$

with r = z c / H

• G.R.:
$$l = \frac{L}{4\pi a^2 (t_0) r_e^2 (1+z)^2}$$

with r_{ρ} from prop. of light

if L is known, measurement of $(l, z) \Rightarrow k, a(t)$

3) relation between matter and curvature:

FRIEDMANN LAW

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi\mathcal{G}}{3}\frac{\rho}{c^2} - \frac{kc^2}{a^2}$$

Remark : for non-relativistic matter, $E = m c^2 \Rightarrow \rho / c^2 = \rho_{mass}$

- ⇒ then *Friedmann law* looks similar to *Newtonian expansion law*, but <u>CRUCIAL DIFFERENCES</u>:
 - 1) $a(t) \neq r(t)$: very different interpretation
 - 2) $k \neq 0$ not in contradiction with homogeneity
 - 3) accounts for non-relativistic and relativistic matter

NON-RELATIVISTIC

$$v \ll c$$
 $E = m c^2$

ULTRA-RELATIVISTIC

$$v = c$$

$$E = \hbar v = \hbar c / \lambda$$

sphere with

fixed comobile r

fixed particle number

$$V = 4/3 \pi r^3 a(t)^3$$

$$E_V = constant$$

 $\rho = E_V / V \propto a(t)^{-3}$

$$E_{V} \propto 1 / \lambda \propto 1 / a(t)$$

 $\rho = E_{V} / V \propto a(t)^{-4}$

FRIEDMANN LAW is the same but DILUTION RATE is different

in fact, in G.R., curvature \Leftrightarrow matter relation given by

Einstein equation
$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

in the FLRW solution :

EINSTEIN EQUATION ⇒

Friedmann law

conservation equation:

$$\dot{\rho} = -3 (\dot{a}/a) (\rho + p)$$

1) non-relativistic:

$$\mathbf{v} \ll \mathbf{c} \implies \mathbf{p} \cong \mathbf{0} \implies \dot{\mathbf{p}} / \mathbf{p} = -3 \dot{\mathbf{a}} / \mathbf{a} \implies \mathbf{p} \ll \mathbf{a}(\mathbf{t})^{-3}$$

2) ultra-relativistic:

$$v = c \implies p = \rho / 3 \implies \dot{\rho} / \rho = -4 \dot{a} / a \implies \rho \propto a(t)^{-4}$$

3) in QFT: vacuum with

$$p = -\rho \implies \dot{\rho} = 0 \implies \rho = constant$$

« cosmological constant »

summary of the situation :

basic principles of G.R.	FLRW solution
space-time is <i>curved</i>	2 types of curvatures : {a(t), k} $dl^2 = a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2\theta \ d\phi^2) \right]$
free-falling objects follow geodesics	 non-relativistic matter : dl = 0 ultra-relativistic matter : dl = c dt BENDING OF LIGHT EQUATION
curvature caused by / related to matter	relation {a(t), k} ⇔ ρ(t) ♣ FRIEDMANN LAW + conservation equations

Part II: The Standard Cosmological Model

decomposition of quantities:

BACKGROUND

THEORY OF LINEAR PERTURBATIONS

Initial conditions
INFLATION
part II - 4

HOMOGENEOUS COSMOLOGY part II - 1

LINEAR PERT. part II - 2

NON-LINEAR PERT.

Part II: (1) – Homogeneous cosmology

- the evolution of the Universe depends :
 - > on SPATIAL CURVATURE
 - > on the density of:
 - - RADIATION : ultra-relativistic particles $\rho \propto a^{-4}$ $p = \rho / 3$

(photons, massless v's, ...)

MATTER : non-relativistic bodies

$$p = 0$$
 $\rho \propto a^{-3}$ (galaxies, gas clouds, ...)

COSMOLOGICAL CONSTANT A

$$p = -\rho$$
 $\rho = constant = \Lambda c^2 / (8\pi G)$
(vacuum?...?)

6-8 August 2003

An overview of cosmology

Friedmann

law:

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi\mathcal{G}}{3c^{2}}\rho_{R} + \frac{8\pi\mathcal{G}}{3c^{2}}\rho_{M} - \frac{kc^{2}}{a^{2}} + \frac{\Lambda}{3}$$

- most « complete » scenario :
- phases can be skipped,but order cannot change

- > RADIATION DOMINATION : $a \propto t^{1/2}$ H = 1/2
- MATTER DOMINATION : $a \propto t^{2/3}$ H = 2 / 3 t
- > CURVATURE DOMINATION :
 - k < 0 (open) : $a \propto t$ H = 1/t
 - k > 0 (closed): $\dot{a} \rightarrow 0$, then $\dot{a} < 0$ or
- \triangleright VACUUM DOMINATION : a \propto exp(Λ/3t)^{1/2} H → constant

Future of the Universe:

- \triangleright if $\Lambda = 0$:
 - •if k < 0 or $k = 0 \rightarrow$ indefinite decelerated expansion
 - •if k > 0 \rightarrow recollapse (BIG CRUNCH)
- \triangleright if $\Lambda \neq 0$:
 - $\blacksquare \forall k$

- → indefinite *accelerated* expansion
- > RADIATION DOMINATION : $a \propto t^{1/2}$ H = 1/2
- > MATTER DOMINATION : $a \propto t^{2/3}$ H = 2 / 3 t
- > CURVATURE DOMINATION :
 - k < 0 (open) : $a \propto t$ H = 1/t
 - $k \ge 0$ (closed) : $\dot{a} \to 0$, then $\dot{a} < 0$ or
- ► VACUUM DOMINATION : $a \propto exp(\Lambda/3t)^{1/2}$ H $\rightarrow constant$

□ the matter budget:

if we can measure $\{\rho_R, \rho_M, k, \Lambda\}$ today, we can extrapolate back ...

> today:

$$1 = \frac{8\pi \mathcal{G}}{3H_0^2c^2}\left(\rho_{\rm R0} + \rho_{\rm M0}\right) - \frac{kc^2}{a_0^2H_0^2} + \frac{\Lambda}{3H_0^2} \ = \ \frac{\Omega_{\rm R} + \Omega_{\rm M} - \Omega_k + \Omega_{\Lambda}}{\text{MATTER BUDGET EQUATION}}$$

> flatness condition : $\Omega_0 \equiv \Omega_{\rm R} + \Omega_{\rm M} + \Omega_{\Lambda} = 1$

► then:
$$\rho_R^{\ 0} + \rho_M^{\ 0} + \rho_{\Lambda}^{\ 0} = \frac{3 H_0^2 c^2}{8\pi G} \equiv \rho_c^{\ 0}$$
 \Rightarrow $\Omega_X = \rho_X / \rho_c^{\ 0}$

> so far : COSN

COSMOLOGICAL SCENARIOS

4 independent parameters

□ COLD or HOT BIG BANG???

> 1929–65: no decisive observation in favour of Friedmann model (apart from accumulation of redshifts)

⇒ works in cosmology remain marginal

- but spectacular progress in particle physics...
- > studies based on the *most simple* possible scenario:
 - Universe contains only non-relativistic matter
 - evolution under the laws of nuclear physics between Big Bang and today

♥ COLD BIG BANG SCENARIO

□ COLD BIG BANG:

$$\rightarrow$$
 H² = $(8\pi G/3c^2) \rho_M \Rightarrow \rho \propto a^{-3} \propto t^{-2}$

> NUCLEOSYNTHESIS:

• ensemble of *nuclear reactions*

• freeze-out due to *expansion*

pioneering works on nucleosynthesis:

```
> 1940: Gamow et al. (USSR \rightarrow USA)
```

1964 : Zel'dovitch et al. (USSR)

1965: Hoyle & Taylor (UK)

1965: Peebles et al. (USA)

> COLD BIG BANG

```
⋄ no hydrogen
```

 \Rightarrow need to change $H(t_{nucleo})$

 \Rightarrow add relativistic matter (photons) with $\rho_R >> \rho_M$

♥ HOT BIG BANG !!!

□ HOT BIG BANG:

- > photon spectrum:
 - before recombination, thermal equilibrium
 - ♦ blackbody spectrum :

- after recombination, Planck spectrum frozen and redshifted
- so $T_0 a_0 = T_{\text{nucleo}} a_{\text{nucleo}}$
- Gamow, Peebles et al. :

nucleosynthesis
$$\Rightarrow$$
 T₀ \approx 1-10 K \Rightarrow $\lambda_0 \approx$ 1-10 mm

discovery of the Cosmic Microwave Background

discovery of the Cosmic Microwave Background

- publications by Penzias & Wilson and Peebles
- Nobel Prize for Penzias & Wilson ...
- confirmation of HOT BIG BANG !!!
- \bigcirc CMB = 25% of TV set noise...
- listen to it at http://:www.bell-labs.com/project/feature/archives/cosmology/

thermal evolution of the Universe

	t	Т	$\rho^{1/4}$
Planck time inflation?	10 ⁻³⁶ s		$10^{18} \mathrm{GeV}$
GUT	10 ⁻³² s		10 ¹⁶ GeV
EW bayogenesis?	10 ⁻⁶ s	10 ¹⁵ K	100 GeV
quark-hadron	10 ⁻⁴ s	$10^{12}\mathrm{K}$	100 MeV
nucleosynthesis	1-1000 s	10 ⁹⁻¹⁰ K	0.1 - 1 MeV
equality	10 ⁴ yr	$10^4 \mathrm{K}$	1 eV
decoupling	10 ⁵ yr	2500 K	0.1 eV
structure formation	$10^5 \text{ yr} \rightarrow t_0$		
today → curvature / A?	$t_0 \approx 13 \text{ Gyr}$	≈ 3 K	$\approx 3.10^{-4} \text{ eV}$

□ is there a curvature / Λ domination today?

- > structure formation \Rightarrow long-enough M.D. $\Rightarrow \Omega_{\rm m} \ge 0.2$
- ightharpoonup if $\Omega_k \sim 1$ or $\Omega_{\Lambda} \sim 1$, curvature / Λ domination started recently:

□ is there a curvature / Λ domination today?

- **HOW CAN WE KNOW?**
 - Ω_k \Rightarrow change $\begin{pmatrix} k \\ a(t) \end{pmatrix}$ \Rightarrow $\begin{cases} apparent luminosity / z \text{ relation} \Rightarrow \text{SNIa} \\ angular diameter / z \text{ relation} \Rightarrow \text{CMB} \end{cases}$
 - age of the Universe (measured with redshift of quasars)

□ DARK MATTER:

galaxy rotation curves :

$$\rho_{\text{mass}}(\mathbf{r}) = \mathbf{b} \mathbf{I}(\mathbf{r})$$

$$\Delta\Phi_{\rm grav}(r) = 8\pi G \,\rho_{\rm mass}$$

$$v^2(r) = r \left(\partial \Phi_{\text{gray}} / \partial r \right)$$

- \Rightarrow DM halo
- > other compelling evidences

> nature of DM : (non-luminous baryons ?

Hot dark matter (neutrinos)?

CDM: WIMPS (neutralinos)? axions?

□ so far:

COSMOGICAL SCENARIO

5 INDEPENDENT
PARAMETERS

 $\{\Omega_{\rm R}\,,\,\Omega_{\rm B}\,,\,\Omega_{\rm CDM}\,,\,\Omega_{\Lambda}\,,\,{\rm H}_0\}$

Part II: (2) – cosmological perturbations

- Universe not completely homogeneous even on large scales ...
 - description of matter inhomogeneities ??
 (clusters of galaxies, superclusters ...)
 - description of CMB temperature anisotropies ??
 - ⇒ ∫ information on cosmological scenario measurement of cosmological parameters
- □ this section:
 - overview of mathematical framework
 - > intuitive description of main phenomena

□ linear perturbation theory:

$$ho_{x}(t, \mathbf{r}) = \overline{\rho}_{x}(t) + \delta \rho_{x}(t, \mathbf{r})$$

HOMOGENEOUS BACKGROUND

PERTURBATION

- CMB temperature homogeneity
 - \Rightarrow perturbations linear at least for t < t_{dec}

$$\delta_{x}(t, \mathbf{r}) \equiv \delta \rho_{x}(t, \mathbf{r}) / \overline{\rho}_{x}(t) << 1$$

□ Einstein equations (matter ⇔ curvature)

- background equations :
 - Friedman law
 - conservation equations

$$\{\overline{\rho}_{\gamma}, \overline{\rho}_{\nu}, \overline{\rho}_{CDM}, \overline{\rho}_{B}\} \iff \{a(t), k\}$$

> perturbation equations :

$$\{\delta_{\gamma}, \delta_{v}, \delta_{\text{CDM}}, \delta_{B}\} \Leftrightarrow \{\text{curvature perturbations}\}\$$
 $\approx \Phi(t, \mathbf{r}) \rightarrow \Phi_{\text{grav}} \text{ inside } R_{H}$

partial derivative equations

 \Rightarrow Fourier transformation ...

comoving Fourier space

- $\delta_{x}^{k}(t) \equiv \int dr^{3} e^{-i k.r} \delta_{x}(t, r)$
 - comoving Fourier wavenumber k
 - comoving wavelength $2\pi / k$
 - physical wavelength $\lambda(t) = 2\pi a(t) / k$
- > independent perturbation equations :

$$\{\delta_{\gamma}^{\ \kappa},\,\delta_{v}^{\ \kappa},\,\delta_{\mathrm{CDM}}^{\ \kappa},\,\delta_{\mathrm{B}}^{\ \kappa}\} \iff \Phi^{\kappa}$$

- linear system of ordinary differential equations...
- even at equilibrium, each wavelength redshifted

□ stochastic theory:

- > random initial conditions : $P(\delta_x^k(t_0))$
- > evolution under differential equation :

$$(d^2/dt^2) \delta_x^{k} + ... (d/dt) \delta_x^{k} + ... \delta_x^{k} = ... \delta_y^{k} + ... \Phi^{\kappa}$$

- Early Universe ⇒ gaussian distributions
- linearity : shape $P(\delta_x^k(t))$ is preserved
- differential equation = evolution of r.m.s.

□ intuitive description of the evolution :

> definition of the HORIZON:

$$d_H(t_1, t_2) = 2 \int_0^{r_2} dl = 2 \int_0^{r_2} a(t_2) \frac{dr}{\sqrt{1 - kr^2}}$$

Propagation of light:

$$\int_{t_1}^{t_2} \frac{c \ dt}{a(t)} = \int_0^{r_2} \frac{dr}{\sqrt{1 - kr^2}}$$

$$d_H(t_1, t_2) = 2a(t_2) \int_{t_1}^{t_2} \frac{c \, dt}{a(t)}$$

> during radiation domination : $a(t) \propto t^{1/2}$, $R_H = 2 c t$

$$d_H(t_1, t_2) = 4 \ c \ t_2^{1/2} [t_2^{1/2} - t_1^{1/2}] \rightarrow 4 \ c \ t_2 = 2 \ R_H(t_2)$$

during matter domination: $a(t) \propto t^{2/3}$, $R_H = 3/2$ c t

$$d_H(t_1, t_2) = 6 \ c \ t_2^{2/3} [t_2^{1/3} - t_1^{1/3}] \to 6 \ c \ t_2 = 4 \ R_H(t_2)$$

> physical process starting during RD, MD cannot affect $\lambda(t) \geq R_H(t)$

without violating causality...

 $R_H(t) \equiv \text{causal horizon for RD / MD}$

□ evolution of wavelengths versus R_H:

$$\lambda(t) = R_H(t) \iff k = 2\pi a(t) / R_H(t)$$

evolution of wavelengths versus R_H:

$$\lambda(t) = R_H(t) \iff k = 2\pi a(t) / R_H(t)$$

- Planck spectrum $\Rightarrow \delta_{\gamma}(t, \mathbf{r}) \Leftrightarrow \delta T/T(t, \mathbf{r})$
- 1) before recombination (= decoupling ≈ equality):

```
photons ↔ baryons ↔ grav. pot.

E.M. gravity

tighly coupled fluid
```



```
gravity « acoustic oscillations » pressure
```

2) after recombination:

photon decoupled → « free streaming »

last scattering surface :

> last scattering surface mapped by COBE DMR (1994):

evolution of perturbations :

> spectrum of CMB anisotropies:

observation of CMB

- $^{\ }$ δ T/T map of last scattering surface
- Fourier spectrum with accoustic peaks

amplitude of the peaks

 $\Rightarrow \Omega_{\rm B}, \Omega_{\rm CDM}, n \dots !!!$

 \Rightarrow angle under which $R_H(t_{dec})$ is seen

angular diameter – redshift relation

spatial curvature k!!!

□ PHOTON PERTURBATIONS:

main observations : COBE DMR (1994)

resolution ~ 10°

 $\lambda(t) \geq R_{\rm H}(t_{\rm dec})$

□ PHOTON PERTURBATIONS:

main observations: Boomerang (2000)

□ PHOTON PERTURBATIONS:

main observations: WMAP (February 2003)

□ MATTER PERTURBATIONS :

CDM:

gravitationnal collapse efficient during MD

 $(RD : \Phi_{gray} \text{ follows } \gamma)$

□ MATTER PERTURBATIONS :

non-linear evolution :

 $\delta_{\text{CDM}}^{k}(t)$, $\delta_{\text{B}}^{k}(t) \sim 1$ first for large k / small λ

⇔ hierarchical structure formation :

linear theory recovered by smoothing

(today: over 30 Mpc)

time

□ MATTER PERTURBATIONS :

bookservations: 2dF redshift survey

Part II: (3) – cosmological parameters

COSMOGICAL SCENARIO

7 INDEPENDENT

PARAMETERS ... at least !!!

$$\{\Omega_{\rm R}^{},\Omega_{\rm B}^{},\Omega_{\rm CDM}^{},\Omega_{\Lambda}^{},H_0^{},A^{},n\}$$

$$h = \frac{H_0}{100 \text{ km.s}^{-1} \cdot \text{Mpc}^{-1}}$$

A short selection of cosmo

- 1) nucleosynthesis
 - $\rho_{B} \Leftrightarrow \rho_{H,\,D,\,He,\,Li}$
- 2) CMB anisotropies
 - position :
 - amplitude :
- 3) age
 - quasars of age ≥ 11 Gyr
- 4) supernovae
 - $\Omega_{\Lambda} \Omega_{M} = 0.5 \pm 0.5$

A short selection of cosmological tests:

- 1) nucleosynthesis
 - $\rho_{\rm B} \Leftrightarrow \rho_{\rm H,\,D,\,He,\,Li}$

$$\Omega_{\rm B} h^2 = 0.020 \pm 0.002$$
, $\Omega_{\rm R} \leftarrow \gamma + 3 \text{ v's}$

- 2) CMB anisotropies
 - position:

$$\Omega_0 = \Omega_M + \Omega_{\Lambda} = 1.03 \pm 0.05$$

amplitude :
$$\Omega_{\rm B} h^2 = 0.024 \pm 0.001$$
, $n = 0.99 \pm 0.04$

- age
 - quasars of age $\geq 11 \text{ Gyr} \Rightarrow \text{open or } \Lambda$
- supernovae

$$\Omega_{\Lambda} - \Omega_{M} = 0.5 \pm 0.5$$

combined:
$$\Omega_{\rm B} \cong 0.044$$
, $\Omega_{\rm CDM} \cong 0.23$, $\Omega_{\Lambda} \cong 0.73$, $h \cong 0.71$

5) large scale structure: perfect agreement

Part II: (4) – Inflation & Quintessence

- « early problems » in the Hot Big Bang scenario :
 - > flatness problem:

$$|\Omega_k(t)| = |\rho_0(t)/\rho_c(t) - 1| = \frac{c^2|k|}{a^2H^2} = \frac{c^2|k|}{\dot{a}^2}$$

- $|\Omega_k|$ grows like t (RD) or $t^{2/3}$ (MD)
- $|\Omega_k| \le 0.1$ at $t_0 \Rightarrow |\Omega_k| \le 10^{-60}$ at t_P
- horizon problem :
 - causal horizon on CMB maps ~ 1°
 ⇒ 10³ causally disconnected regions

- > origin of fluctuations:
 - initially, $\lambda \gg R_H \dots$

(Guth 79; Starobinsky 79)

defined as an initial accelerated expansion stage:

> solves flatness problem :

$$|\Omega_k(t)| = |\rho_0(t)/\rho_c(t) - 1| = \frac{c^2|k|}{a^2H^2} = \frac{c^2|k|}{\dot{a}^2}$$

> solves horizon problem :

$$d_{H}(t_1,t_2) \cong R_{H}(t_2)$$
 for $t_1 \ll t_2$ and $t_1 \in RD, MD$

$$d_{H}(t_1,t_2) >>> R_{H}(t_2)$$
 for $t_1 << t_2$ and $t_1 \in INFLATION$

> solves generation of fluctuations:

$$\frac{\lambda(t)}{R_H(t)} = \frac{2\pi a(t)}{k} \frac{\dot{a}(t)}{c \; a(t)} = \frac{2\pi \dot{a}(t)}{c \; k}$$

> requires:

Friedman law

conservation equation

$$a(t) > 0 \iff \rho + 3 p < 0$$

> candidates:

- $\Lambda : \rho + 3 p = -2 p < 0$ but inflation forever ...
- slow-rolling scalar field:

$$\begin{cases} \rho = \dot{\phi}^2 / 2 + V(\phi) \\ p = \dot{\phi}^2 / 2 - V(\phi) \end{cases}$$

□ INFLATION with slow-rolling scalar field:

2 BONUS !!!

> mechanism for generation of cosmological perturbations

quantum fluctuations of scalar field

wavelength
amplification

stochastic background of curvature perturbations

VALIDATED BY OBSERVATIONS

mechanism for generation of first particles : PREHEATING

end of inflation — oscillations of scalar field — particle production

« late problems » in the Hot Big Bang scenario:

 \triangleright magnitude of Λ :

 $\rho_{\Lambda}^{1/4} \sim 10^{-3} \, \text{eV} \, !!!!$

problem for particle physicists :

 \Leftrightarrow killing $\rho_{\Lambda}^{1/4} \sim \text{MeV / TeV } \dots$

problem for cosmologists :

 \Leftrightarrow generating such small number with respect to $\rho_P^{1/4} \sim 10^{18} \, \text{GeV} \dots$

« Cosmic coincidence problem » :

 \Rightarrow why \land domination today?

- many... unappealing proposals for Dark Energy, e.g.:
 - slow-rolling scalar field : « quintessence »

$$\begin{cases}
\rho = \frac{\dot{\phi}^2}{2} + V(\phi) \\
p = \frac{\dot{\phi}^2}{2} - V(\phi)
\end{cases}$$

« late problems » in the Hot Big Bang scenario :

 \triangleright magnitude of Λ :

 $\rho_{\Lambda}^{1/4} \sim 10^{-3} \, eV \, !!!!$

problem for particle physicists : $\Leftrightarrow \textit{killing} \ \rho_{\Lambda}^{1/4} \sim \textit{MeV} \ / \ \textit{TeV} \ ...$

problem for cosmologists :

solved but $m \sim 10^{-33} \, eV$ generating such small number with respect to $\rho_P^{1/4} \sim 10^{18} \, GeV$...

« Cosmic coincidence problem » :

 \Rightarrow why \land domination today?

CONCLUSION 1

INFLATION is a convincing, predictive theory... but need to relate to particle physics models (GUT, Susy, strings...)

no convincing theory for « DARK ENERGY »

CONCLUSION 2

- cosmology has remarkable control on:
 - cosmological parameters
 - nucleosynthesis
 - decoupling
 - > structure formation, lensing, etc., etc.
- \square ...but 23 + 73 = 96 % remains MYSTERIOUS !!!

$$dl^{2} = a^{2}(t) \left[\frac{dr^{2}}{(1-k r^{2})} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

➤ Remark 1: if $\{k = 0 \text{ AND } a(t) \equiv constant \}$, $\overline{r} = a r \Rightarrow Euclidian space \Rightarrow Newton$

$$dI^{2} = a^{2}(t) \left[\frac{dr^{2}}{(1-k r^{2})} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

Remark 2:

- Euclidian : $dl^2 = dr^2 + r^2 (d\theta^2 + \sin^2\theta d\phi^2) = dx^2 + dy^2 + dz^2$ \Rightarrow does not depend on the choice of origin ...
- FLRW: $k \neq 0 \Rightarrow dl$ seems to depend on the choice of origin ...

 \Rightarrow do solutions with $k \neq 0$ violate the assumption of homogeneity ??

NO, $k \neq 0$ respects homogeneity !!! r changes, but also dr, θ , d θ and d ϕ : in fact dl is the same no particular point is priviledged

$$dl^{2} = a^{2}(t) \left[\frac{dr^{2}}{(1-k r^{2})} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$

- Remark 2:analogy with the 2-D mappingof the earth by axial projection:
 - on each map, the scale is a function of r
 - but all points on the sphere are equivalent

... the FLRW model is completely homogeneous !!!

summary of the situation :

basic principles of G.R.	FLRW solution
space-time is <i>curved</i>	2 types of curvatures : {a(t), k} $dl^2 = a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2\theta \ d\phi^2) \right]$
free-falling objects follow geodesics	????????
curvature caused by / related to matter	????????