An overview of Cosmology

CERN Student Summer School 9-13 August 2004 Julien Lesgourgues (LAPTH, Annecy)

What is Cosmology?

 \Box Astrophysics \Rightarrow detailed description of « small » structures Cosmology Ö Universe as a whole ¾ Is it static? Expanding ? ¾ Is it flat, open or closed ? ¾ What is it composed of ? ¾ What about its past and future ?

 Part I : the expanding Universe \triangleright Hubble law ¾ Newtonian gravity ¾ General relativity ¾ Friedmann-Lemaître model **Part II :** the standard cosmological model ¾ Hot Big bang scenario ¾ Cosmological perturbations ¾ Cosmological parameters **Example 13 Propriet Service Strategy Andrews** Geometry and abstraction … **Concrete** predictions, results, observations !!

Part I : The Expanding Universe

Part I : (1) · - The Hubble Law

<u>n</u> First step in understanding the Universe... ¾ first telescopes: observation of *nebulae* ¾ 1750 : T. Wright : Milky way = *thin plate of stars* ? ¾ 1752 : E. Kant : nebulae = *other galaxies* ?

Galactic structure not tested before… 1923!

- ¾ 1868 : Huggins finds redshift of *star spectral lines*
- $\geq 1868 1920$: observation of many redshift of stars and nebulae
	- random distribution
	- late observations : *excess of z>0 for nebulae*

 1920's : Leavitt & Shapley : \triangleright cepheids \Rightarrow period / absolute luminosity relation

apparent luminosity

 ${\rm d} = {\rm d} {\rm L}/{\rm d} {\rm s} = {\rm L}/(4\pi{\rm r})$ 2)

\triangleright measurement of distances of stars inside the Milky Way (~ 80.000 lightyear)

6-8 August 2003 **An overview of cosmology**

absolute luminosity

 $\rm L$

 1923 : Edwin Hubble : ¾ 2,50 m telescope at *Mount Wilson (CA)* ¾ cepheids in *Andromeda* \triangleright distance of nearest galaxy = 900.000 lyr (in fact 2 Mlyr) Ö *first probe of galactic structure* !!! ¾ so : excess of redshifted galaxies Ø*Universe expansion ???*

\Box IN GENERAL : expansion \Leftrightarrow center

Against « cosmological principle » (Milne):

İ

- ¾ Universe homogeneous …
- ¾ no privileged point!

QUESTION : is any expansion a proof against homogeneity?

$ANSWER:$ not if $v=H r$ \Leftarrow linear expansion

… like infinite rubber grid stretched in all directions …

Proof that *linear expansion* is the only possible homogeneous expansion :

 $\mathbf{v}_{\mathbf{B/A}} = \mathbf{v}_{\mathbf{C/B}}$ \Leftrightarrow homogeneity $\triangleright \mathbf{v}_{\text{C/A}} = \mathbf{v}_{\text{C/B}} + \mathbf{v}_{\text{B/A}} = 2 \mathbf{v}_{\text{B/A}} \Rightarrow$ linearity

\Rightarrow THE UNIVERSE IS IN HOMOGENEOUS EXPANSION

1929 : starting of modern cosmology …

Remark : what do we mean by « the Universe is homogeneous » (*cosmological principle*) ?

¾ example of structure homogeneous *after smoothing:*

- ¾ today : data on *very large scales* Ö confirmation of homogeneity beyond \sim 30 – 40 Mpc
- ¾ local inhomogeneities Ö *scattering*

Part I : (2) · - Universe expansion from Newtonian gravity from Newtonian gravity

on cosmic scales, only *gravitation*

Newton's law = limit of *General Relativity* (GR)

 ${\bf F} = {\bf G} \, {\bf m}_1 \, {\bf m}_2 / \, {\bf r}^2$

when $v \ll c$

speed of object ORspeed of liberation

¾ *Newton's law* should describe expansion at small distances with $v = H r \ll c \ldots$

 \triangleright but historically, GR proposed the first predictions / explanations !!!

Newtonian expansion law : $($ r $/$ r $)^2 = (8\pi G/3)$ $\rho_{\rm mass}$ - k/r² .

 \Rightarrow no more Φ_{grav} (*matter distribution* $\Leftrightarrow \Phi_{\text{grav}} \Leftrightarrow E = \nabla \Phi_{\text{grav}}$)

- \Rightarrow three basic principles :
	- space-time (t, x, y, z) is curved
	- 2) curvature ⇔ matter
	- 3) *free-falling bodies* follow *geodesics*

1) how can we define the *curvature* :

¾of a 2-D surface?

- \blacksquare **-** embedded in 3D
- \blacksquare stay in 2D, and use angles :

 \blacksquare stay in 2D, and use a scaling law : $dl(x_1,x_2)$

ex: sphere projected on ellipse, dl (θ)

¾ of 3-D space ?

- embedded in 4D : \mathbf{x}_1 $2 + x_2$ $^{2}+x_{3}$ $^{2}+{\rm x}_{4}$ 2 $=$ ${\bf R}$ 2
- stay in 3D, but provide a scaling law, like on a planisphere : $dl(x_1,x_2,x_3)$

¾ of 4-D space-time ?

- one more dimension
- time different from space (*special relativity* : + + +)

intuitive representations:

mathematical formulation = *Einstein equation*

Newtonian gravity *versus* G.R. :

two different theories of gravity, i.e. two ways of describing how the presence of matter affects the trajectories of surrounding bodies…

 applying G.R. to the Universe: *some history* ≥ 1916 : Einstein has formulated G.R.

¾ 1917 : Einstein, De Sitter try to build the first cosmological models (PREJUDICE : STATIC / STATIONNARY UNIVERSE)

► 1922 : A. Friedmann (Ru)) investigate most general

 \triangleright 1927 : G. Lemaître (B)

► 1933 : [Robertson, NON-STATIONNARY

HOMOGENEOUS, ISOTROPIC, Walker $\overline{(USA)}$ $\overline{}$ solutions of G.R. equations

¾ 1929 : Hubble's law (first confirmation) ¾ 1930-65 : accumulation of proofs in favour of FLRW ¾ 1965 : CMB discovery : full confirmation

\Box summary of the situation :

NEWTON

 \Rightarrow matter distribution \Leftrightarrow $\Phi_{\text{grav}} \Leftrightarrow$ forces changing the trajectories

General Relativity (GR)

- \Rightarrow three basic principles :
	- 1) space-time (t,x,y,z) is curved
	- 2) *free-falling bodies* follow *geodesics*
	- 3) curvature ⇔ matter

Friedmann-Lemaitre model = application of GR to homogeneous Universe

scale as a function of coordinates ?

- $▶$ COMOVING COORDINATES (t, r, θ, φ)
- ¾ for *Euclidian space* :

 $dl^2 = dr$ $^2+{\rm r}$ 2 (d θ $^2 + \sin^2 θ dφ^2$)

O

for *FLRW* : $dl^2 = a^2(t)$ $\frac{du}{(1 + u^2)} + r^2 (d\theta)$ $^2 + \sin^2 θ dφ^2$) dr 2 $(1\text{--} \mathrm{k}\mathrm{~r}^{2}$)

- $a(t)$ = scale factor \Rightarrow 2-D space-time curvature
	- \blacksquare k \Rightarrow spatial curvature
		- **k = 0 : FLAT**
		- $-{\bf k} > 0$: **CLOSED**, $R_C(t) = a(t)/k^{1/2}$, $0 \le r \le 1/k^{1/2}$
		- $-{\bf k} < 0$: OPEN, ${\bf R}_C(t) = a(t) / (-k)^{1/2}$
-

non-relativistic matter:

dl = 0 ⇒ (r, θ, φ) = *constant*

 \blacksquare galaxies are still in coordinate space …

 … but all distances are proportional to a(t) a(t) gives the expansion between galaxies (although they are still !!!)

 \blacksquare *like an inflated rubber balloon with points drawn on its surface …*

 \blacksquare

 \Rightarrow *^various important consequences …*

definition of the past light-cone :

¾ *in Euclidian space* :

θ = *constant*

• $r_e = c (t_0 - t_e)$

¾ *in Friedmann universe :*

θ = *constant*

$$
\int_{r_e}^{0} \frac{-dr}{\sqrt{1 - kr^2}} = \int_{t_e}^{t_0} \frac{c}{a(t)} dt
$$

•
$$
\frac{dr}{dt} = -\frac{c}{a(t)} \frac{(1 - kr)^{1/2}}{a(t)}
$$

observable consequences of *propagation of light equation:*

\triangleright the redshift :

 $\mathsf{z} = \Delta \lambda / \lambda = \lambda_{0} / \lambda_{\mathrm{e}} - 1$

 $z = a(t_0) / a(t_e) - 1$

\blacktriangleright remark 1 :

- \mathbf{u} . **Newtonian** : $z = v / c \le 1$
- \mathbf{u} . *G.R. :* no limit, as observed …

¾ remark 2 : at short distance, we can recover the *Hubble law* ($z = v/c = H r/c$)

2) the angular diameter-redshift relation *Euclidian space :* $dl = r d\theta$ with $r = v/H = z c/H$ *G.R. :* $dl = a(t_e) r_e d\theta$ with r_e from dl d θ r

 \Rightarrow *if dl is known, measurement of (d* θ *, z)* \Rightarrow *k, a(t)*

3) relation between matter and curvature :

FRIEDMANNLAW

$$
\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi\mathcal{G}}{3} \frac{\rho}{c^2} - \frac{kc^2}{a^2}
$$

Remark : for non-relativistic matter, $E = m c^2 \Rightarrow \rho / c^2 = \rho_{mass}$ Ö then *Friedmann law* looks similar to *Newtonian expansion law,* but CRUCIAL DIFFERENCES : 1) a(t) ≠ r(t) : *very different interpretation* 2) ^k ≠ 0 *not in contradiction with homogeneity* 3) accounts for *non-relativistic and relativistic matter*

$$
⇒ in fact, in G.R., curvature ⇒ matter relation given by\nEINSTEIN EQUATION GµV = 8πG TµV\n⇒ in the FLRW solution:\nEINSTEIN EQUATION ⇒\nFriedmann law\n
$$
P = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n
$$
p = -3 (a / a) (p + p)
$$
\n<math display="block</math>
$$

summary of the situation :

Part II : **The Standard** Cosmological Model

□ decomposition of quantities:

THEORY OF LINEAR PERTURBATIONS

<u>Part II : (1)</u> · $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ $-$ Homogeneous cosmology

- \Box the evolution of the Universe depends :
	- ¾ *on* SPATIAL CURVATURE
	- ¾ *on the density of* :

$$
\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi\mathcal{G}}{3} \frac{\rho}{c^2} - \frac{kc^2}{a^2}
$$

- RADIATION : ultra-relativistic particles $p = \rho / 3$ $\rho / 3$ $\rho \propto a^{-4}$
- MATTER : non-relativistic bodies $p = 0$ $\rho \propto a^{-3}$ (galaxies, gas clouds, …)
- COSMOLOGICAL CONSTANT Λ $p = -\rho$ $\rho = constant = \Lambda c^2 / (8\pi G)$ (vacuum ? … ?)

(photons, massless ^ν's, …)

…

6-8 August 2003 An overview of cosmology 43

 $\lceil t^{-2} \rceil$

<u>Future of the Universe:</u>

 \blacktriangleright \blacktriangleright k

if $k < 0$ or $k = 0 \rightarrow$ indefinite *decelerated* expansion \mathbf{e} if $k > 0$ $\mathcal{P} \Pi \Lambda \neq 0$. \triangleright if $\Lambda = 0$: \rightarrow recollapse (BIG CRUNCH) \triangleright if $\Lambda \neq 0$:

→ indefinite *accelerated* expansion

- > RADIATION DOMINATION : $a \propto t^{1/2}$ H = 1 / 2 t ¾ MATTER DOMINATION : a ∝ $t^{2/3}$ H = 2 / 3 t
- ¾ CURVATURE DOMINATION :
	- $\bullet \, k \leq 0$ (open) : a \sim t H = 1 / t
	- **•** $k > 0$ (closed) : $\dot{a} \rightarrow 0$, then $\dot{a} < 0$ or

¾ VACUUM DOMINATION : a ∝ *exp* (Λ/3t)1/2 H → *constant*

°

the matter budget :

 \triangleright if we can measure $\{\rho_R, \rho_M, k, \Lambda\}$ today, we can extrapolate back … H^2 a^{-4} a^{-3} a^{-2} **CS1** a

¾ today :

$$
1 = \frac{8\pi\mathcal{G}}{3H_0^2c^2} \left(\rho_{\text{R}0} + \rho_{\text{M}0}\right) - \frac{kc^2}{a_0^2H_0^2} + \frac{\Lambda}{3H_0^2} = \frac{\Omega_{\text{R}} + \Omega_{\text{M}} - \Omega_k + \Omega_{\Lambda}}{\text{MATTER BUDGET EQUATION}}
$$

 \triangleright flatness condition : $\Omega_0 \equiv \Omega_R + \Omega_M + \Omega_\Lambda = 1$

► then :
$$
\rho_R^0 + \rho_M^0 + \rho_{\Lambda}^0 = \frac{3 H_0^2 c^2}{8\pi G} \equiv \rho_c^0
$$
 $\Rightarrow \Omega_X = \rho_X / \rho_c^0$
\n>⇒ so far : $\left(\frac{\text{COSMOLOGICAL}}{\text{SCENARIOS}}\right)$ \longleftrightarrow $\left\{\Omega_R, \Omega_M, \Omega_{\Lambda}, H_0\right\}$

COLD or HOT BIG BANG ???

- $\geq 1929-65$: no decisive observation in favour of Friedmann model (apart from accumulation of redshifts) Ö *works in cosmology remain marginal*
- ¾ but spectacular progress in particle physics …
- ¾ studies based on the *most simple* possible scenario:
	- Universe contains only non-relativistic matter
	- evolution under the laws of nuclear physics between Big Bang and today

ª COLD BIG BANG SCENARIO

pioneering works on nucleosynthesis :

 \ge | 1940 : Gamow et al. (USSR \rightarrow USA) 1964 : Zel'dovitch et al. (USSR) 1965 : Hoyle & Taylor (UK) 1965 : Peebles et al. (USA)

¾ **COLD BIG BANG**

 \upphi no hydrogen ψ need to change $H(t_{\text{nucleo}})$ ψ add relativistic matter (photons) with $\rho_R >> \rho_M$ ª HOT BIG BANG !!!

HOT BIG BANG :

¾ photon spectrum :

before recombination, thermal equilibrium

- after recombination, Planck spectrum *frozen* and *redshifted*
- \blacksquare SO **so** T_0 $a_0 = T_{\text{nucleo}}$ a_{nucleo}
- Gamow, Peebles et al. :

nucleosynthesis \implies T₀ \approx 1-10 K \implies $\lambda_0 \approx$ 1-10 mm

Q discovery of the Cosmic Microwave Background

Q discovery of the Cosmic Microwave Background

\Box thermal evolution of the Universe

 \Box is there a curvature / Λ domination today ? \triangleright structure formation \Rightarrow long-enough M.D. $\Rightarrow \Omega_m \ge 0.2$

 ρ if Ω_k ~ 1 or Ω_Λ ~ 1, curvature / Λ domination *started recently :*

\Box is there a curvature / Λ domination today ? ¾ HOW CAN WE KNOW ? • Ω_k $\rceil \Rightarrow$ change $\lceil k \rceil \Rightarrow$ *[apparent luminosity / z* relation \Rightarrow SNIa $\, \Omega_{\Lambda} \,$ \mathbf{a} *a* $\mathbf{a}(t)$ *angular diameter / z* **relation** \Rightarrow **CMB**

age of the Universe (measured with *redshift of quasars*)

DARK MATTER :

¾ galaxy rotation curves :

 $\rho_{\text{mass}}(\mathbf{r}) = \mathbf{b} \mathbf{I}(\mathbf{r})$ $\Delta \Phi_{\text{grav}}(\mathbf{r}) = 8 \pi G \ \mathbf{p}_{\text{mass}}$ $\mathbf{v}^2(\mathbf{r}) = \mathbf{r} \left(\partial \mathbf{\Phi}_{\text{grav}} / \partial \mathbf{r} \right)$

⇒ DM halo

 \triangleright other compelling evidences \triangleright nature of DM : \int non-luminous baryons ?

Hot dark matter (neutrinos)? CDM : WIMPS (neutralinos) ? axions ?

Part II : (2) · $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ – cosmological perturbations

- Universe not completely homogeneous *even on large scales …*
	- **► description of matter inhomogeneities ??** (clusters of galaxies, superclusters …)
	- ¾ description of CMB temperature anisotropies ??
		- \Rightarrow \int information on cosmological scenario ℓ measurement of cosmological parameters

his section : ¾ overview of *mathematical framework* ¾ intuitive description of *main phenomena* linear perturbation theory : $\triangleright \forall x, \quad \rho_x(t, r) = \overline{\rho}_x(t) + \delta \rho_x(t, r)$ **HOMOGENEOUS** S PERTURBATION BACKGROUND

 \triangleright CMB temperature homogeneity \Rightarrow perturbations linear at least for t $\lt t_{\text{dec}}$ $\delta_{\mathbf{x}}(\mathbf{t}, \mathbf{r}) \equiv \delta \rho_{\mathbf{x}}(\mathbf{t}, \mathbf{r}) / \overline{\rho}_{\mathbf{x}}(\mathbf{t}) \ll 1$

Einstein equations (matter ⇔ curvature)

¾ background equations :

- Friedman law
- **Conservation equations**

 $\{\overline{\rho}_{\gamma}, \overline{\rho}_{v}, \overline{\rho}_{CDM}, \overline{\rho}_{B}\} \Leftrightarrow \{a(t), k\}$

¾ perturbation equations : $\{\delta_\gamma, \delta_\nu, \delta_{CDM}, \delta_B\} \Leftrightarrow$ {curvature perturbations}} $\approx \Phi(t, r) \rightarrow \Phi_{\text{grav}}$ inside R_H

partial derivative equations ⇒ *Fourier transformation* …

comoving Fourier space

 $\delta_{x}^{k}(t) \equiv \int dr^{3} e^{-ik \cdot r} \delta_{x}(t, r)$

- **comoving Fourier wavenumber k**
- **comoving wavelength** 2π **/ k**
- physical wavelength $\lambda(t) = 2\pi a(t) / k$

¾ independent perturbation equations :

 $\{\delta_{\gamma}^{\kappa}, \delta_{\nu}^{\kappa}, \delta_{CDM}^{\kappa}, \delta_{B}^{\kappa}\}$ $\langle \rangle$ \Leftrightarrow Φ κ

linear system of ordinary differential equations...

**Example 21 Figure 10 *

stochastic theory :

 \triangleright random initial conditions : $P(\delta_{x}^{k}(t_0))$ ¾ evolution under differential equation :

 $(d^2/dt^2) \delta_x^{\ \ k} + ... (d/dt) \delta_x^{\ \ k} + ... \delta_x^{\ \ k} = ... \delta_y^{\ \ k} + ...$ Φκ

- Early Universe ⇒ gaussian distributions
- linearity : shape $P(\delta_x^{\ \mathbf{k}}(t))$ is preserved
- **differential equation = evolution of r.m.s.**

intuitive description of the evolution : ¾ definition of the HORIZON :

► during radiation domination : $a(t) \propto t^{1/2}$, $R_H = 2c$ to $d_H(t_1, t_2) = 4 c t_2^{1/2} [t_2^{1/2} - t_1^{1/2}] \rightarrow 4 c t_2 = 2 R_H(t_2)$ ► during matter domination : $a(t) \propto t^{2/3}$, $R_H = 3/2$ c t $d_H(t_1, t_2) = 6 c t_2^{2/3} [t_2^{1/3} - t_1^{1/3}] \rightarrow 6 c t_2 = 4 R_H(t_2)$

¾ physical process starting during RD, MD cannot affect $\lambda(t) \ge R_H(t)$ *without violating causality…*

 $R_H(t)$ = causal horizon for RD / MD

\Box evolution of wavelengths versus R_H : $\lambda(t) = R_H(t) \iff k = 2\pi a(t) / R_H(t)$

\Box evolution of wavelengths versus R_H : $\lambda(t) = R_H(t) \iff k = 2\pi a(t) / R_H(t)$

\Box PHOTON PERTURBATIONS :

¾last scattering surface :

\Box PHOTON PERTURBATIONS :

¾last scattering surface *mapped by COBE DMR (1994) :*

\Box PHOTON PERTURBATIONS :

 \blacktriangleright evolution of perturbations :

 \Box PHOTON PERTURBATIONS : ¾ spectrum of CMB anisotropies: observation of CMB ª δT/T map of last scattering surface

 $\overline{\mathbb{Q}}$ Fourier spectrum with accoustic peaks

amplitude of the peaks *position* of the peaks

 \Rightarrow angle under which $R_H(t_{\text{dec}})$ is seen *angular diameter – redshift relation*

spatial curvature <mark>k</mark> !!!

 \Rightarrow $\ \Omega_{\rm B}$, $\Omega_{\rm CDM}$, $\rm n\ ... \ \, \mathord!\mathord! \mathord! \mathord!$
\Box PHOTON PERTURBATIONS :

¾main observations : *COBE DMR (1994)*

resolution [∼] 10º

 $\lambda(t) \ge R_H(t_{\text{dec}})$

\Box PHOTON PERTURBATIONS :

\blacktriangleright main observations : *Boomerang (2000)*

\Box PHOTON PERTURBATIONS :

\blacktriangleright main observations : *WMAP (February 2003)*

CDM : state of the state of efficient during MD $(\rm RD:\Phi_{\rm grav}$ follows γ) baryons : follow $\int \gamma$ during RD CDM during MD

¾

¾

\Box MATTER PERTURBATIONS :

¾non-linear evolution :

> $\delta_{\rm CDM}^{}^{}(\rm t)$, $\delta_{\rm B}^{}^{}(\rm t)$ ∼ 1 first for large k / small λ

ª *hierarchical structure formation :*

linear theory recovered by smoothing (today: over 30 Mpc)

time

\Box MATTER PERTURBATIONS :

 \blacktriangleright observations : *2dF redshift survey*

A short selection of cosmological tests : 1) nucleosynthesis π $\rho_B \Leftrightarrow \rho_{H, D, He, Li}$ $\Omega_{\rm B}$ h² \geq $Q.020 \pm 0.002$, $\Omega_{\rm R}$ \leftarrow γ + 3 v's 2) CMB anisotropies \blacksquare position : $\Omega_{\rm 0}$ = $\Omega_{\rm M}$ + $\Omega_{\rm \Lambda}$ = 1.03 \pm 0.05 \blacksquare **amplitude :** $\Omega_{\rm B}h^2 = 0.024 \pm 0.00$ λ , $n = 0.99 \pm 0.04$ 3) age \blacksquare **• Comparison quasars of age** ≥ 11 **Gyr** \Rightarrow **open or A** 4) supernovae \blacksquare $\Omega_{\Lambda}^{} - \Omega_{\rm M}^{} = 0.5 \pm 0.5$ combined : $\Omega_B \approx 0.044$, $\Omega_{CDM} \approx 0.23$, $\Omega_A \approx 0.73$, $h \approx 0.71$

5) large scale structure : perfect agreement

<u>Part II : (4)</u> · $\mathcal{L}_{\mathcal{A}}$, and the set of $\mathcal{L}_{\mathcal{A}}$ **- Inflation & Quintessence** « early problems » in the Hot Big Bang scenario :

¾ flatness problem :

$$
\Box \quad |\Omega_k(t)| = |\rho_0(t)/\rho_c(t) - 1| = \frac{c^2|k|}{a^2H^2} = \frac{c^2|k|}{\dot{a}^2}
$$

- \blacksquare Ω_k grows like t *(RD)* or $t^{2/3}$ *(MD)*
- $\left|\Omega_{\rm k}\right| \leq 0.1$ at $t_0 \Rightarrow |\Omega_{\rm k}| \leq 10^{-60}$ at $t_{\rm p}$

¾ horizon problem :

 causal horizon on CMB maps ∼ 1° \implies 10³ causally disconnected regions

¾ origin of fluctuations :

• initially, $\lambda \gg R_H$...

\Box INFLATION : (Guth 79; Starobinsky 79)

¾ defined as an initial *accelerated expansion* stage :

INFLATION :

¾ solves flatness problem :

INFLATION :

¾ solves generation of fluctuations :

$$
\frac{\lambda(t)}{R_H(t)} = \frac{2\pi a(t)}{k}\frac{\dot{a}(t)}{c\ a(t)} = \frac{2\pi \dot{a}(t)}{c\ k}
$$

- \triangleright candidates :
	- $Λ: ρ + 3 p = -2 p < 0$ but inflation forever ...

 slow-rolling scalar field : $\rho = \phi^2 / 2 + V(\phi)$ $p = \phi^2 / 2 - V(\phi)$. .

 $V(\phi)$ +

INFLATION with slow-rolling scalar field :

2 BONUS !!!

¾ mechanism for generation of cosmological perturbations

quantum fluctuations wavelength [stochastic background of of scalar field *amplification* curvature perturbations

predictions : coherent, gaussian, VALIDATED BY adiabatic, scale-invariant CBSERVATIONS

¾ mechanism for generation of first particles : PREHEATING end of inflation \longrightarrow oscillations of scalar field \longrightarrow particle production

« late problems » in the Hot Big Bang scenario : \triangleright magnitude of Λ : ρ_{Λ} $\frac{1}{4}$ ~ 10⁻³ eV !!!

- **Problem for particle physicists :** $\not\Rightarrow$ killing ρ_{Λ} ¼ ∼ MeV / TeV *…*
- **problem for cosmologists :** ª *generating such small number* with respect to ρ_p ¼ ∼ 1018 GeV *…*
- « Cosmic coincidence problem » : ª *why* Λ *domination today ?*

many… unappealing proposals for Dark Energy, e.g. :

¾ slow-rolling scalar field : « quintessence »

 $\rho = \phi^2 / 2 + V(\phi)$ $p = \phi^2 / 2 - V(\phi)$. .

« late problems » in the Hot Big Bang scenario : \triangleright magnitude of Λ : ρ_{Λ} $\frac{1}{4}$ ~ 10⁻³ eV !!!

problem for particle physicists : $\not\Rightarrow$ killing ρ_{Λ} ¼ ∼ MeV / TeV *…* **unsolved**

problem for cosmologists :

ª *generating such small number with respect to* $\rho_{\rm p}^{1/4} \sim 10^{18} \,\rm GeV$... $\frac{1}{4}$ solved but —m ~ 10^{-33} eV

 « Cosmic coincidence problem » : ª *why* Λ *domination today ?*

CONCLUSION 1

INFLATION is a convincing, predictive theory… but need to relate to particle physics models (GUT, Susy, strings…)

no convincing theory for « DARK ENERGY »

CONCLUSION 2

cosmology has remarkable control on :

- ¾ cosmological parameters
- \triangleright nucleosynthesis
- \triangleright decoupling
- \triangleright structure formation, lensing, etc., etc.

\Box …but 23 + 73 = 96 % remains MYSTERIOUS !N

$dl^2 = a^2(t)$ $\frac{du}{(1 + r^2)} + r^2 (d\theta)$ 2 + sin²θ dφ²) $\mathrm{d}\mathrm{r}^2$ $(1\text{--} \mathrm{k}\mathrm{~r}^{2}$)

≻ <u>Remark 1:</u> if $\{ k = 0 \text{ AND } a(t) \equiv constant \}$, \overline{r} = a r \Rightarrow *Euclidian space* \Rightarrow Newton

$dl^2 = a^2(t)$ $\frac{du}{(1 + r^2)} + r^2 (d\theta)$ 2 + sin²θ dφ² $\frac{{\mathrm{d}} {\mathrm{r}^2}}{{\mathrm{d}} {\mathrm{r}^2 {\mathrm{r}^2}}}+{\mathrm{r}^2}\left({\mathrm{d}} \theta^2+\sin^2\!\theta \ {\mathrm{d}} \phi^2\ \right)$ $(1\text{--} \mathrm{k}\mathrm{~r}^{2}$)

\triangleright Remark 2 :

O

O'

r $\longrightarrow r$

dl

- **•** *Euclidian* : dl² = dr² + r² (dθ² + sin²θ dφ²) = dx² + dy² + dz² Ö *does not depend on the choice of origin …*
- **FLRW** \therefore $k \neq 0$ \Rightarrow dl *seems to depend on the choice of origin* ...

 \Rightarrow do solutions with $k \neq 0$ violate the assumption of homogeneity ??

NO, $k \neq 0$ respects homogeneity !!! r changes, but also dr, $θ$, dθ and dφ : in fact dl is the same no particular point is priviledged

dl 2 = a $f^2(t)$ $\frac{dr}{(1 + r^2)} + r^2 (d\theta)$ 2 + sin²θ dφ² $\frac{{\mathrm{d}} {\mathrm{r}^2}}{{\mathrm{d}} {\mathrm{r}^2 {\mathrm{r}^2}}}+{\mathrm{r}^2}\left({\mathrm{d}} \theta^2+\sin^2\!\theta \ {\mathrm{d}} \phi^2\ \right)$ $(1\text{--} \mathrm{k}\mathrm{~r}^{2}$)

 \triangleright Remark 2 :

analogy with the 2-D mapping of the earth by axial projection:

- on each map, the scale *is a function of* r
- but all points on the sphere are equivalent

… the FLRW model is completely homogeneous !!!

summary of the situation :

