ISOLDE
Isotope Separation On-Line
(ISOL)
Mats Lindroos
on
behalf of the CERN ISOLDE team
Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Outline

• Overview of the ISOL technique
• ISOLDE-REX, post acceleration of radioactive ions
• Physics at ISOLDE
• Future plans
• Visit
Summer students
2004
Mats Lindroos on behalf of the
ISOLDE team

ISOLDE@CERN
Summer students
Mats Lindroos on behalf of the
ISOLDE team
2004
Production of exotic ions

1 GeV p + \(^{238}U \) → \(^{201}Fr \) (spallation) + \(^{11}Li \) (fragmentation) + \(^{143}Cs \) (fission) + X + Y

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Production yields

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Thermochemical and physical principles
- Diffusion
- Effusion
The thermal shock of the proton’s dE/dx is transferred to the “cold” converter.

\begin{itemize}
 \item \textbf{UC target}
 \item \textbf{HT-oven electrical connections}
 \item \textbf{Ion-source}
 \item \textbf{PROTONS / NEUTRONS}
 \item \textbf{p+ beam-scan (95Kr yield)}
\end{itemize}

\textbf{1 GeV p}\textbf{U}\textbf{Fr}\textbf{Li}\textbf{Cs}\textbf{Y}

\textbf{Spallation}\textbf{Fragmentation}\textbf{Fission}
ISOECRIS
- based on a ISOLDE unit
- coils
- consumable unit
- Running off-line

MINIMONO ISOLDE
- GANIL design [1,2]
- ‘standard’ ISOLDE unit
- permanent magnets
- consumable unit
- Running on-line

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
F. Wenander, J. Lettry
Laser Ionization

- Laser beams
- atom
- ion
- continuum
- ionization energy < 9-10 eV
- excited states
- ground state
ISOLDE target change

Summer students 2004

Mats Lindroos on behalf of the ISOLDE team
Summer students 2004
Mats Lindroos on behalf of the ISOLDE team

Magnetic separation

- "Isobaric" separation
- Separation limited by the beams transverse size
- Cooling at low energy with RFQ cooler
To get pure beams free from isobaric contamination:

- Target material
- Target and ion source chemistry
- Proton energy
- Ion source
- Magnetic separation
ISOL FACILITIES 1967

1967

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
World Wide Radioactive Beam Facilities

Summer students 2004 Mats Lindroos on behalf of the ISOLDE team

ISOL facilities 2003
Why bother?

• A few-body system of hadrons (neutrons and protons) with many remaining question marks
• “Largest” system where strong and weak interaction are manifested
• “Applications”
 – Astrophysics
 – Condensed matter
 – Energy
 – Medicine
“And why nuclear physics? My answer is the same as that of the young student who chose nuclear physics – it is a field of basic research with fascinating fundamental problems and applications to many other areas such as medicine and material science. I believe that nuclear physics is so broad that it is well on the way to becoming the most general natural science.”

Professor Paul Kienle, 1993
Physics at ISOLDE

- Solid state physics: 17%
- Particle and Astrophysics: 14%
- Biology/Medicine: 2%
- Atomic Physics: 18%
- Weak Interaction and Nuclear Physics: 49%

- 35 Experiments
- 270 Users
- 77 Institutes
- 22 Countries

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Astrophysics

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Halo Nuclei

^{11}Li: Borromean Halo Nucleus

Summer students
2004

Mats Lindroos on behalf of the ISOLDE team

BEER is good for Nuclear Physics
Mass models

Constraints for nuclear mass models

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Mass measurements

Mats Lindroos on behalf of the ISOLDE team

D. Lunney
Mass measurements

F. Herfurth, et al., NIM A 469, 264 (2001)

- Stable alkali ion reference source
- Cluster ion source
- Ion beam cooler and buncher
- Penning trap
- Removal of contaminant ions
- Isobaric separation
- Determination of cyclotron frequency
- Isomeric separation

\[\omega_c = \frac{q}{m} \cdot B \]

Time-of-flight [\mu s]

Excitation frequency [Hz]

B = 6 T
B = 4.7 T

Nd:YAG 532 nm

Summer students
2004

Mats Lindroos on behalf of the ISOLDE team
Solid state physics
Radioactive ions as “spies” (PAC) in high-Tc superconductors...

... or as dopants in semiconductors that change with time.

Time after annealing:
- 4 h
- 31 h
- 56 h
- 73 h
- 104 h
- 149 h
- 236 h
- 331 h
- 696 h

CdTe:^{71}As

(D, A_{As})

(D, A_{Ge})

(D, A_{Li,Na})

PL intensity [a.u.]

Energy [eV]
Example: samarium isotopes

“in vivo” dosimetry by positron emission tomography (PET)

142-Sm (e, T1/2 = 72m) -> 142-Pm (β, T1/2 = 40s)

Therapy: 153-Sm (β, T1/2 = 47h)

PET scan of a rabbit 60 min p.i. of ISOLDE produced 142-Sm in EDTMP solution
Principle of Radioimmunotherapy

DAUDI cells

Cell membrane

Proteins in healthy cells

Protein strand in cancer cells (CD20 antigens of B cells)

149Tb

Linker (CHX-A-DTPA)

MoAb (Rituximab) specific to CD20 antigens of B cells

Plasma

Summer students

Mats Lindroos on behalf of the ISOLDE team

Principle of Radioimmunotherapy
Post acceleration

- Challenges when accelerating radioactive ions:
 - Low intensity
 - Short half lives
 - Charge state

2.2 MeV/u

Production and ionization

3.1 MeV/u

Time structure

Beam size

4.3 MeV/u

Acceleration

A < 145

Summer students
2004

Mats Lindroos on behalf of the ISOLDE team
Summer students 2004

Mats Lindroos on behalf of the ISOLDE team

ISOLDE

- REX EBIS
- REXTRAP
- q/A-selector

For A < 40:
- Breeding time (A/q < 4.5) < 20 ms
- Repetition rate 50 Hz
- Beam intensities < 10^9/s

Single charged ions from REXTRAP
- Electron gun (0.5A/5kV)
- Solenoid (2T)
- Collector drift tubes
- Separation from residual gas ions

For A > ?:

IS 397 team

Charge breeding of Uranium and
- 96Sr^{15+}, 94Rb^{15+}

Accumulation

Cooling

Ejection
Summer students 2004 Mats Lindroos on behalf of the ISOLDE team
Future Plans
More protons: Linac 4

From M. Vretenar
Summer students
2004

Mats Lindroos on behalf of the ISOLDE team
Summer students 2004
Mats Lindroos on behalf of the
ISOLDE team

600 ms cycling of the PS booster

- Present PSB cycle 1.2 s
- Increase PSB capacity to cope with increased demands for protons at CERN
- Major proton users to benefit: LHC, ISOLDE, CNGS

From M. Benedikt, AB, CERN
FUTURE PLANS

Summer students 2004 Mats Lindroos on behalf of the ISOLDE team

The SPL

- **Future Plans**
- **The SPL**
- **Summer students 2004** Mats Lindroos on behalf of the ISOLDE team
Future plans
A next generation RNB facility

Hall 1
Hall 2
Hall 3
Summer students 2004
Mats Lindroos on behalf of the ISOLDE team
Target Development

Summer students 2004
Mats Lindroos on behalf of the ISOLDE team

H.Ravn, U.Koester, J.Lettry, S.Gardoni, A.Fabich
AIM: provide beams of electron (anti) neutrinos by decay of beta active ions.

The Beta-Beam

- **Proton Driver**
 - SPL

- **Ion production**
 - ISOL target & Ion source

- **Beam preparation**
 - ECR pulsed

- **Ion acceleration**
 - Linac

- **Acceleration to medium energy**
 - Bunching ring and RCS

- **PS & SPS**

- **Experiment**
 - Decay ring
 - $B_r = 1500$ Tm
 - $B = 5$ T
 - $C = 7000$ m
 - $L_{ss} = 2500$ m

 - ^6He: $g = 150$
 - ^{18}Ne: $g = 60$

- **IF of RB?**

Summer students
2004

Mats Lindroos on behalf of the ISOLDE team
CERN TO FREJUS

SPL @ CERN
2.2GeV, 50Hz, 2.3x10^{14}p/pulse à4MW
Now under R&D phase

Summer students
2004
Mat Lindroos on behalf of the
ISOLDE team
Water Cherenkov
Super KamioKande

MultiUSER detector: Astrophysics, Beta-beam, Super Beam, Proton Decay

Summer students
2004

Mats Lindroos on behalf of the
ISOLDE team
Combination of beta beam with low energy super beam

Unique to CERN:

combines CP and T violation tests

\[\nu_e \rightarrow \nu_\mu \quad (\beta^+) \quad \leftrightarrow \quad T \quad \nu_\mu \rightarrow \nu_e \quad (\pi^+) \]

\[\bar{\nu}_e \rightarrow \bar{\nu}_\mu \quad (\beta^-) \quad \leftrightarrow \quad T \quad \bar{\nu}_\mu \rightarrow \bar{\nu}_e \quad (\pi^-) \]

A. Blondel
Conclusions

• Nuclear physics and its applications:
 – are fascinating subjects
 – have an exciting future at new large scale facilities
 – holds exciting research opportunities for you; for a Ph.D. and a future research career

• Thank you for your attention!
ISOLDE visit

- Today at 15.00!
- Bring your filmbadge
- We are meeting outside the ISOLDE hall
Summer students 2004
Mats Lindroos on behalf of the ISOLDE team

1. RILIS
2. Collections (medical physics, solid state physics)
3. Control room and targets
4. COLLAPS, COMPLIS and Tilted foil
5. ISOLDE Posters
6. ISOLTRAP
7. MISTRAL and NICOLE
8. MINI-BALL
9. ASPIC
10. REX