Violation of Particle Anti-particle Symmetry

CERN Summer Student Lectures 6, 9, 10 and 11 August 2004

Tatsuya Nakada CERN and Swiss Federal Institute of Technology Lausanne

Contents of the Lecture

 Π

 $(\cdot \cdot)$

Geneva Festiva

- 1) Transformation, symmetries, invariance
- 2) P, T and C transformation3) Conservation of symmetries

 - 4) CP violation in the charged kaon system
 - 5) CP violation in the neutral kaon system
 6) Kaon interferometer
- 7) Standard Model and CP violation (K, B)
- IV { 8) Baryogenesis and CP violation 9) Next experimental steps

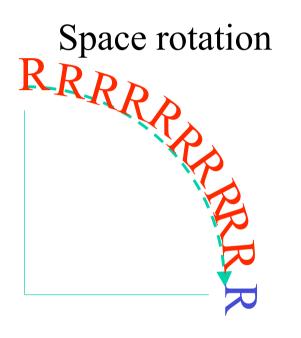
tatsuya.nakada@cern.ch Room 2/1-043

22:00, Saturday 7 August Great Musical Fireworks Display

1) Transformation, symmetries, invariance

Important concept in physics...

Space translation



continuous

continuous

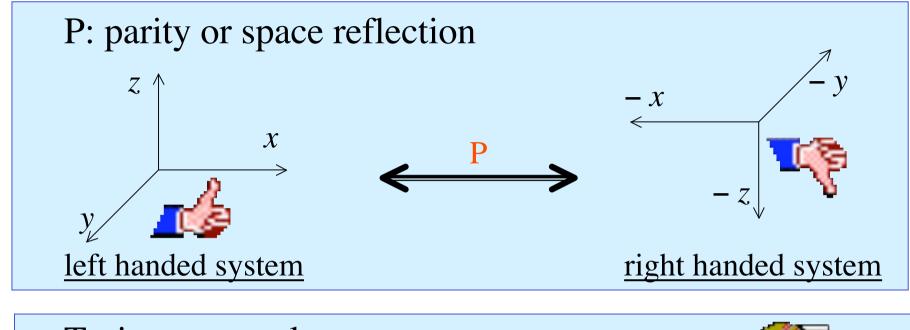
If system remains invariant \Rightarrow conservation of momentum angular momentum Another classical examples...

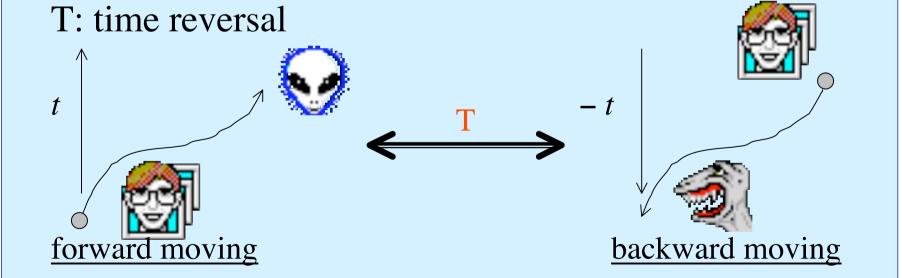
time translation \rightarrow energy conservation rotation in space-time \rightarrow Lorenz transformation

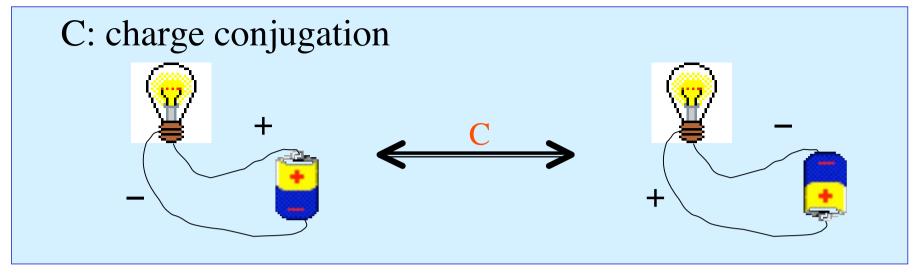
There are transformations in "internal" space... U(1) gauge transformation → electromagnetism SU(2) gauge transformation → weak interactions SU(3) gauge transformation → strong interactions

They are all continuous transformation!

2) P, T and C transformation







<u>In particle physics</u> reversing internal quantum numbers charged states

e⁻ (electron) \Leftrightarrow e⁺ (positron) $\Leftrightarrow \quad \overline{p} \text{ (anti proton)}$ p (proton) \Leftrightarrow π^- (negative pion) π^+ (positive pion) \overline{u} (anti u quark) u (u quark) \Leftrightarrow neutral states n (neutron) \overline{n} (anti neutron) \Leftrightarrow K^0 (k-zero meson) \Leftrightarrow K⁰ (anti k-zero meson) π^0 (neutral pion) \Leftrightarrow π^0 (neutral pion)

C, P and T are discrete transformations

Reflection (parity)

R

R

discrete

3) Conservation of symmetries

If no difference seen between
"this world" and "space reflected world"

⇒ We say:

parity is conserved,
P symmetry is conserved,
world is invariant under P transformation
etc.

example

More "professional" description,

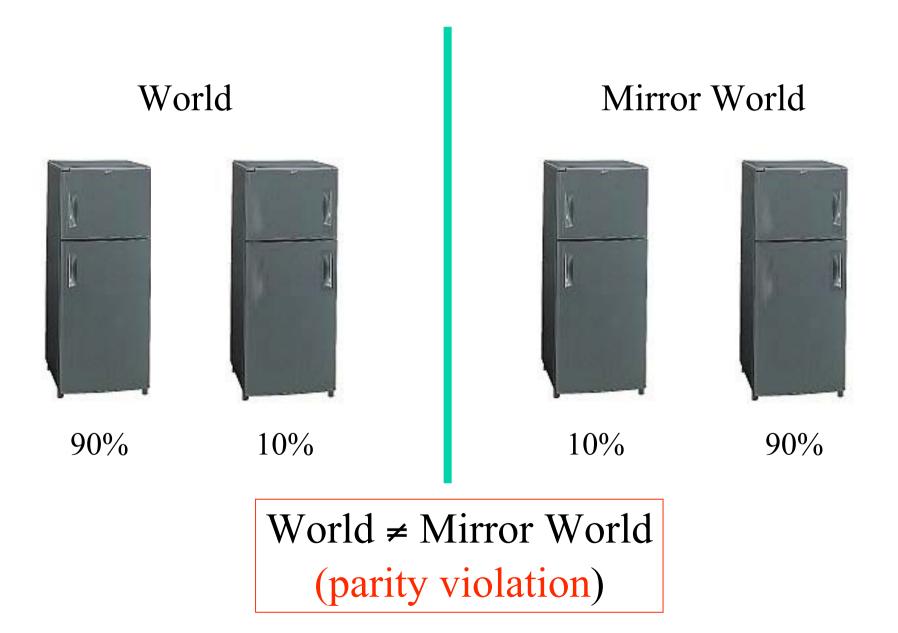
- \hat{H} Hamiltonian operator describing a system
- \hat{P} Parity transformation operator

 $\hat{P}^{\dagger}\hat{H}\hat{P} = \hat{H}^{P}$ parity transformation of Hamiltonian

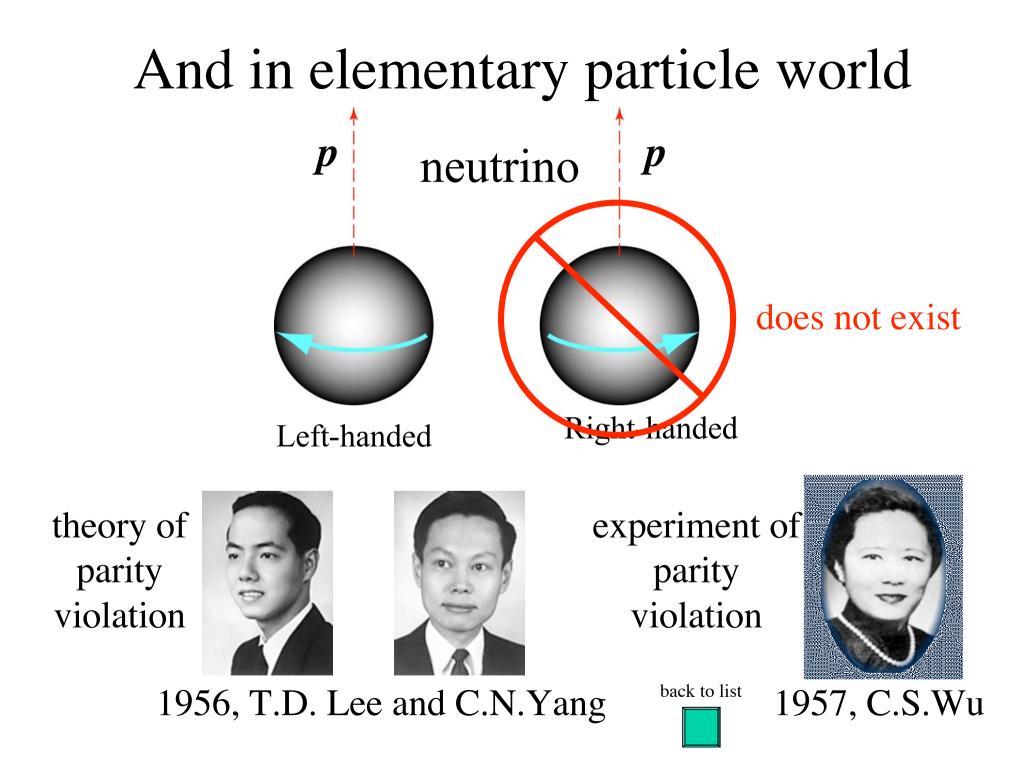
If
$$\hat{H}^{\mathbf{P}} \neq \hat{H}$$

Parity violation, Parity non-conservation etc. etc.

Violation of Parity



World Mirror World Image: State of the sta



A similar terminology applies to C and T.

Strong and electromagnetic interactions conserve: flavour quantum numbers, C, P, T, CP, CT, PT and CPT

Particle physics example: pion decay via electromatnetic int. $\pi^0 \rightarrow \gamma \gamma$ but not $\gamma \gamma \gamma$

$$\pi^{0} = (u\bar{u} + d\bar{d})_{L=0, S=0} \longrightarrow C(\pi^{0}) = +1$$

$$\overrightarrow{B}, \overrightarrow{E} \xrightarrow{C} -\overrightarrow{B}, -\overrightarrow{E} \longrightarrow C(\gamma) = -1$$

initial state $C(\pi^0) = +1$, final state $C(\gamma\gamma) = (-1)^2 = +1$, $C(\gamma\gamma\gamma) = (-1)^3 = -1$ Conservation of C in π^0 decays

Or... calculating decay amplitudes

$$A_{\gamma\gamma\gamma} = \langle \gamma\gamma\gamma|C^{-1}CHC^{-1}C|\pi^{0}\rangle = -\langle \gamma\gamma\gamma|CHC^{-1}|\pi^{0}\rangle$$

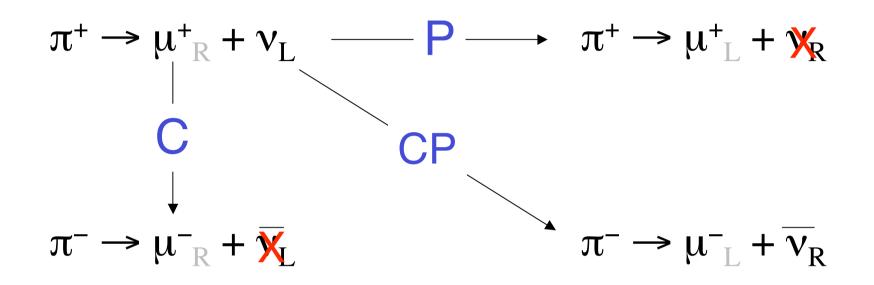
$$= -\langle \gamma\gamma\gamma|H|\pi^{0}\rangle = -A_{\gamma\gamma\gamma}$$

$$A_{\gamma\gamma\gamma} = 0$$

weak interactions interact with neutrinos...

Neutrio is only left-handed Antineutriono is only right-handed \rightarrow C nor P conserved

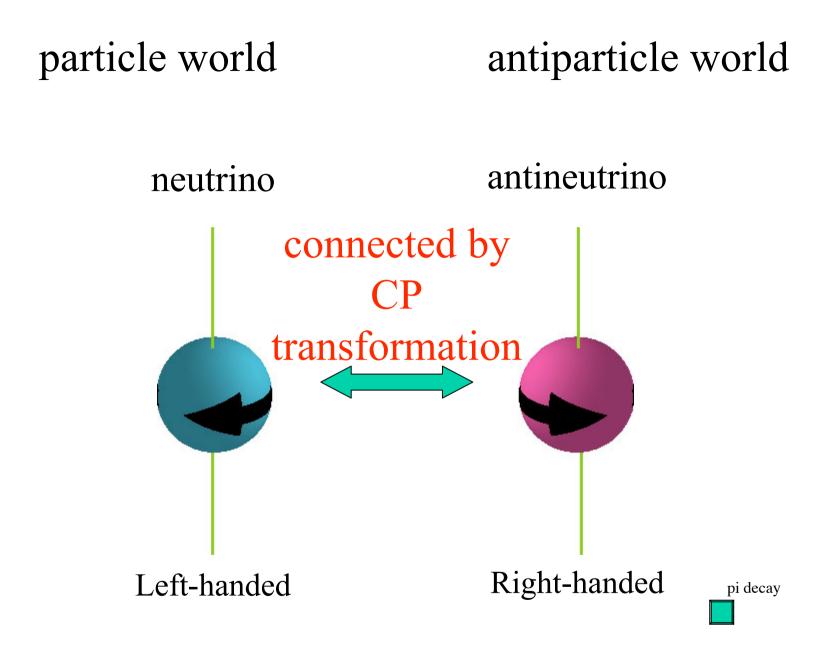
pion decays via weak interaction

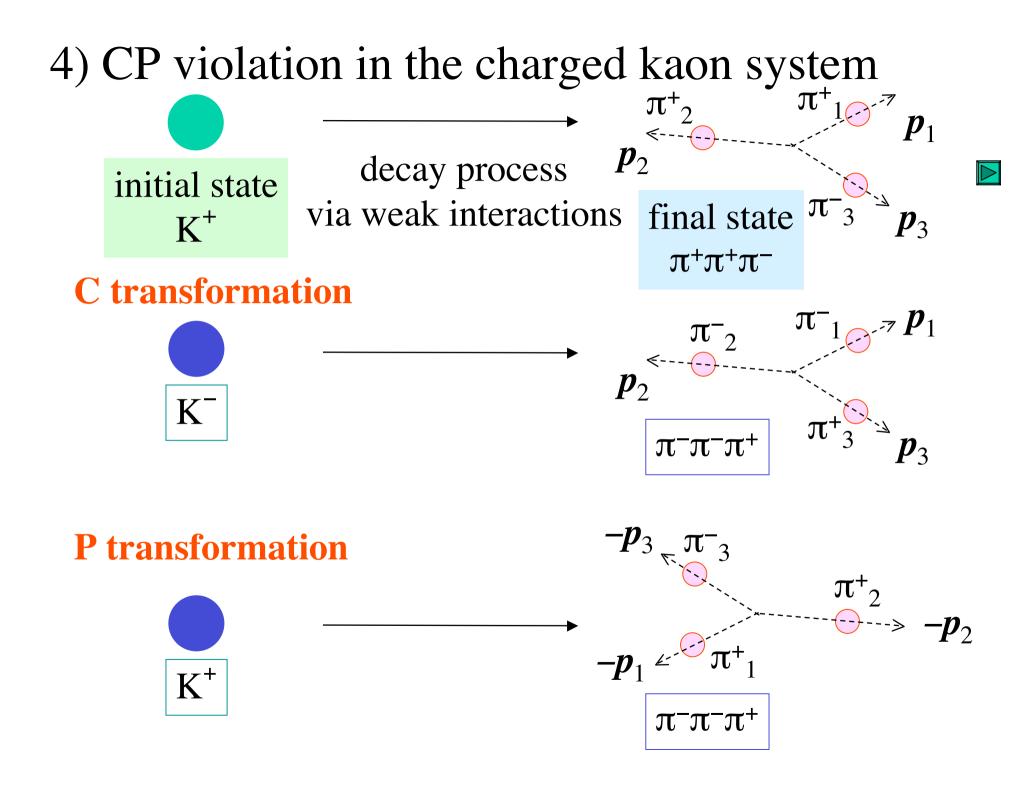


 $v_{\rm R}$ or $\overline{v}_{\rm L}$ do not exist

P or C transformed decay processes do not exist: → P and C violation. (if you can see handedness)

It looks like there is no CP violation.





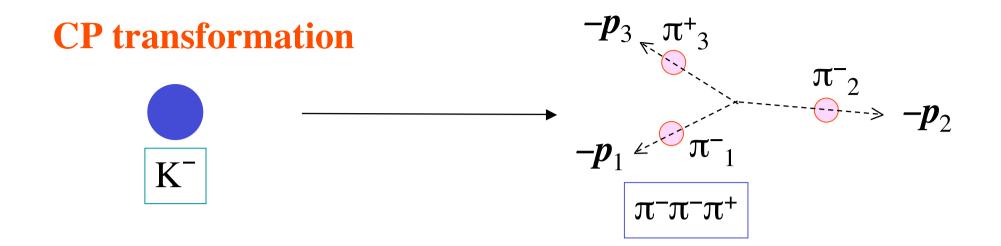
Partial decay width for $K^+ \to \pi^+ \pi^+ \pi^ \Gamma_{K^+ \to \pi^+ \pi^+ \pi^-} = \int d^3 p_1 \int d^3 p_2 \int d^3 p_3 \Gamma_{\pi_1^+, \pi_2^+, \pi_3^-}(\vec{p}_1, \vec{p}_2, \vec{p}_3)$

C transformed partial decay width $\Gamma_{\mathrm{K}^{+} \to \pi^{+} \pi^{-}}^{\mathrm{C}} = \int d^{3} p_{1} \int d^{3} p_{2} \int d^{3} p_{3} \Gamma_{\pi_{1}^{-}, \pi_{2}^{-}, \pi_{3}^{+}} \left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3} \right)$ $\equiv \Gamma_{\mathrm{K}^{-} \to \pi^{-} \pi^{-} \pi^{+}}$

P transformed partial decay width

$$\begin{split} \Gamma^{\mathrm{P}}_{\mathrm{K}^{+} \to \pi^{+} \pi^{-}} &= -\int d^{3} p_{1} \int d^{3} p_{2} \int d^{3} p_{3} \Gamma_{\pi_{1}^{+}, \pi_{2}^{+}, \pi_{3}^{-}} \left(-\vec{p}_{1}, -\vec{p}_{2}, -\vec{p}_{3} \right) \\ &= \Gamma_{\mathrm{K}^{+} \to \pi^{+} \pi^{+} \pi^{-}} \end{split}$$

P does not affect phase space integrated decay width.



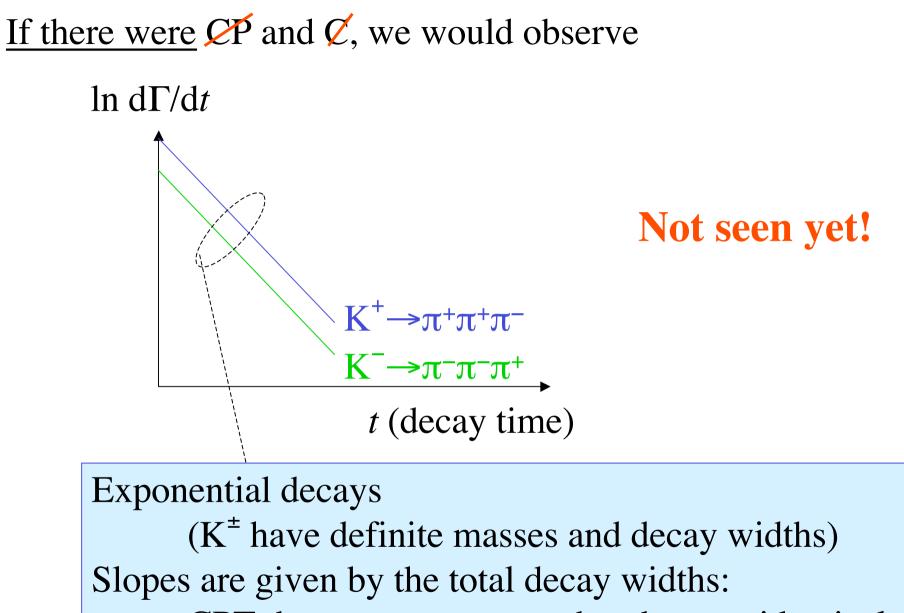
CP transformed partial decay width $\Gamma_{K^{+} \to \pi^{+} \pi^{+} \pi^{-}}^{CP} = -\int d^{3} p_{1} \int d^{3} p_{2} \int d^{3} p_{3} \Gamma_{\pi_{1}^{-}, \pi_{2}^{-}, \pi_{3}^{+}} \left(-\vec{p}_{1}, -\vec{p}_{2}, -\vec{p}_{3} \right)$ $= \int d^{3} p_{1} \int d^{3} p_{2} \int d^{3} p_{3} \Gamma_{\pi_{1}^{-}, \pi_{2}^{-}, \pi_{3}^{+}} \left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3} \right)$ $= \Gamma_{K^{-} \to \pi^{-} \pi^{-} \pi^{+}}$

Partial decay width: $\Gamma_{K^+ \to \pi^+ \pi^+ \pi^-}$ and $\Gamma_{K^- \to \pi^- \pi^- \pi^+}$ are CP and C transformed to each other If $\Gamma_{K^+ \to \pi^+ \pi^+ \pi^-} \neq \Gamma_{K^- \to \pi^- \pi^- \pi^+} \rightarrow \mathcal{C}P$ and $\mathcal{C}!$

NB: these differences can appear in Γ or $d\Gamma/dt$

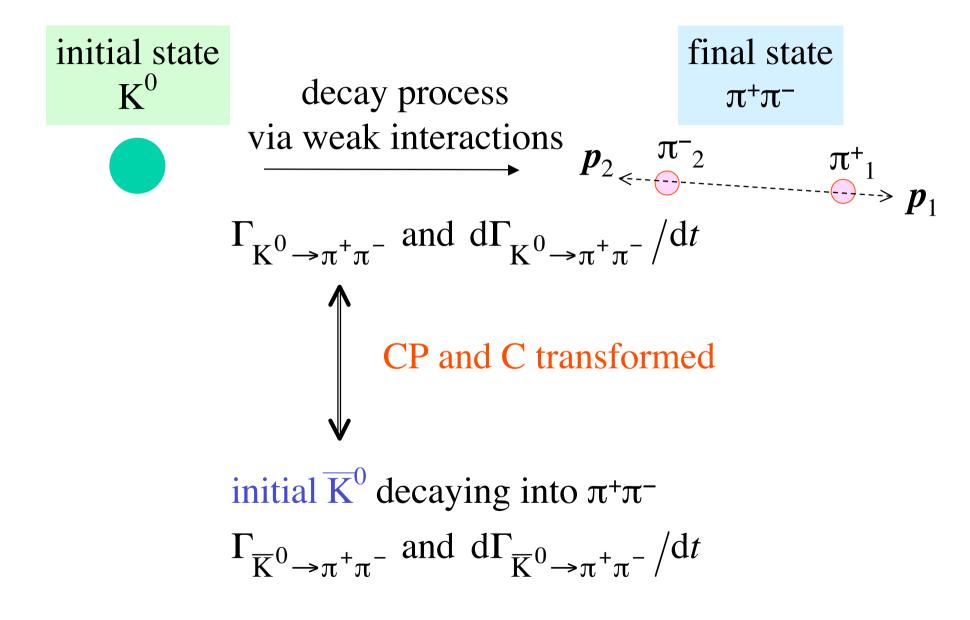
In general, and are needed in order to generate partial decay widths differences between particles and anti particles.

Total widths between K⁺ and K⁻ must be identical CPT



CPT theorem guarantees that they are identical.

5) CP violation in the neutral kaon system



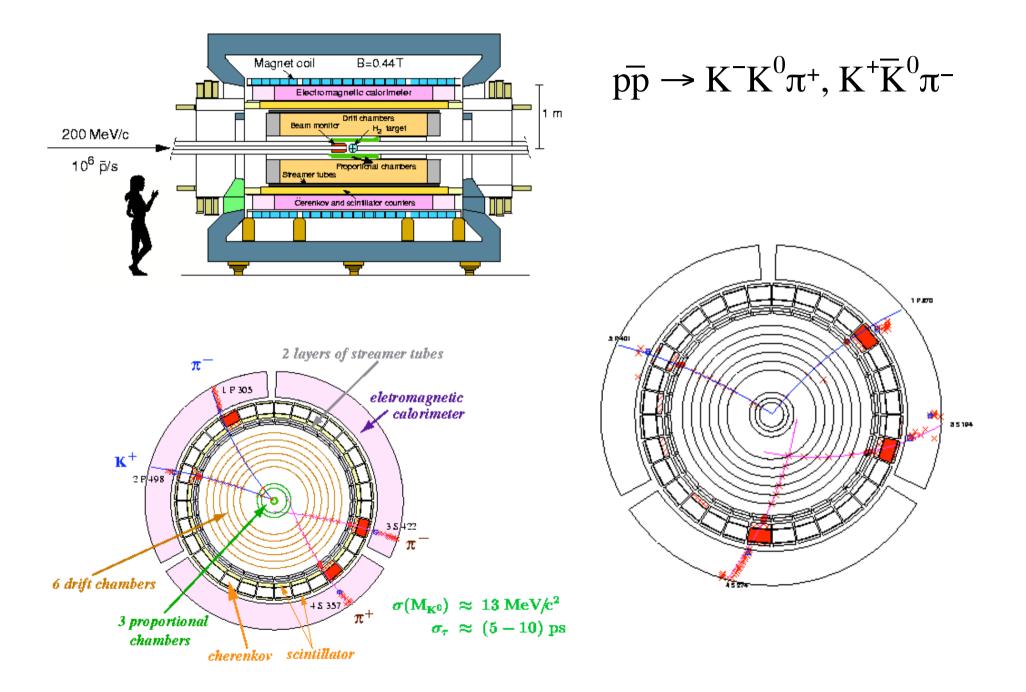
How do we produce K^0 and \overline{K}^0 ?

Strong and electromagnetic interactions conserve strangeness:

$$K^{+}n (s = +1) \rightarrow pK^{0} (s = +1), K^{-}p (s = -1) \rightarrow n\overline{K}^{0} (s = -1)$$
$$p\overline{p} (s = 0) \rightarrow K^{-}K^{0}\pi^{+}, K^{+}\overline{K}^{0}\pi^{-} (s = 0)$$
$$\varphi (s = 0) \rightarrow K^{0}\overline{K}^{0} (s = 0)$$

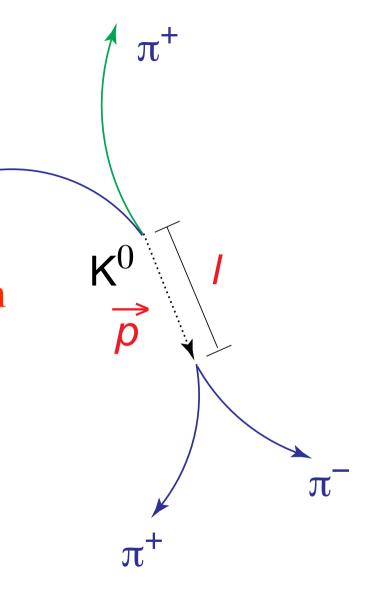
(Neutral kaons are generally produced as "flavour eigenstate".)

The CPLEAR Detector



By measuring the decay length and momentum, determine the decay time.

 K^{-}



 K^0 flight time = $f(l, \vec{p})$

