

Measurements of scintillation in fluorocarbons

CERN – Summer student programme 2004 Student sessions - 16th of august 2004 Sven Bjarke Gudnason s011425@student.dtu.dk

Project outline

 Measurement of the scintillation light in different fluorocarbons (gases) as function of the wavelength per energy

Which basically means:

for various gases:

Ar,
$$CF_4$$
, C_4F_{10} ,

$$C_6F_{12}$$
, etc.

Motivation

- The LCHb project uses 2 RICH detectors for measurement of velocity i.e. particle identification

RICH

The particles in the RICH produce Cherenkov light ("shockwave")

RICH

The particles in the RICH produce Cherenkov light ("shockwave")
and in addition scintillation light

Principles

- Energy -> velocity (β) & momentum (p)
- Stopping power calculated from Bethe-Bloch combined with a constructed Gaussian curve
- Energy loss and step length calculated
- Multiple scattering calculated (new position of AP)
- Isotropic emission of a photon
- Determine if the photon hits the crystal and if it enters the HPMT
- Emission energy versus measured energy ratio calculated
- Determine if AP should die

- Energy -> velocity (β) & momentum (p)
- Stopping power calculated from Bethe-Bloch combined with a constructed Gaussian curve
- Energy loss and step length calculated
- Multiple scattering calculated (new position of AP)
- Isotropic emission of a photon
- Determine if the photon hits the crystal and if it enters the HPMT
- Emission energy versus measured energy ratio calculated
- Determine if AP should die

- Energy -> velocity (β) & momentum (p)
- Stopping power calculated from Bethe-Bloch combined with a constructed Gaussian curve
- Energy loss and step length calculated
- Multiple scattering calculated (new position of AP)
- Isotropic emission of a photon
- Determine if the photon hits the crystal and if it enters the HPMT
- Emission energy versus measured energy ratio calculated
- Determine if AP should die

- Energy -> velocity (β) & momentum (p)
- Stopping power calculated from Bethe-Bloch combined with a constructed Gaussian curve
- Energy loss and step length calculated
- Multiple scattering calculated (new position of AP)
- Isotropic emission of a photon
- Determine if the photon hits the crystal and if it enters the HPMT
- Emission energy versus measured energy ratio calculated
- Determine if AP should die

- Energy -> velocity (β) & momentum (p)
- Stopping power calculated from Bethe-Bloch combined with a constructed Gaussian curve
- Energy loss and step length calculated
- Multiple scattering calculated (new position of AP)
- Isotropic emission of a photon
- Determine if the photon hits the crystal and if it enters the HPMT
- Emission energy versus measured energy ratio calculated
- Determine if AP should die

- Energy -> velocity (β) & momentum (p)
- Stopping power calculated from Bethe-Bloch combined with a constructed Gaussian curve
- Energy loss and step length calculated
- Multiple scattering calculated (new position of AP)
- Isotropic emission of a photon
- Determine if the photon hits the crystal and if it enters the HPMT
- Emission energy versus measured energy ratio calculated
- Determine if AP should die

Simulation Results

Simulation Results

Simulation Results

Setup

- Simulation programme and setup ready
- Done vacuum tests for several days
- Measurement of the energy of the AP
- Measurement of wavelength integrated scintillation in Ar as reference

Work accomplished

What to do next?

- Preliminary experiments finished
 - Made simulation programme and done most of the simulations
 - Made the setup
 - Measured the energy of the APs
 - Measured the wavelength integrated photon yield of Ar
- Do the measurements!
 - First do the final wavelength integrated photon yield
 - and then as function of wavelength with a monochromator

