Astroparticle Physics (3/3)

Nathalie PALANQUE-DELABROUILLE CEA-Saclay CERN Summer Student Lectures, August 2004

- 1) What is Astroparticle Physics?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Lecture outline

- 1) What is Astroparticle Physics?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Brief Cosmic Ray history

1912 Hess discovers cosmic rays

1925 Quasi-isotropy

Auger discovered extensive air showers (E = 10¹⁵ eV!)

First air shower experiment

Energy spectrum

Structure in cosmic ray spectrum

GZK (Greisen Zatsepin Kuzmin) Cut-off

$$p + \gamma_{CMB} \rightarrow \Delta^{+}$$
 $p + \pi^{0}$ $n + \pi^{+}$

When process energetically allowed (>5×10¹⁹ eV), space becomes opaque to CR

Sources with $E > E_{GZK}$ must be at d<100 Mpc (local cluster)

(no known acceleration sites...)

Acceleration mechanisms

1949 : Fermi acceleration

Stochastic acceleration of particles on magnetic inhomogeneities

Head-on collisions ⇒ Energy gain
Tail-end collisions ⇒ Energy loss
On average, head-on more probable
⇒ Energy gain over many collisions

$$\Delta$$
E/E α β ² β = v/c \diamondsuit 10⁻⁴

Slow and inefficient

" Second order "

First order Fermi acceleration

1970's: First order Fermi acceleration Acceleration in strong shock waves

Conservation of nb of particles:

$$ho_1$$
 $v_1 = \rho_2$ v_2
Strong shock : $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1)$
Fully ionized plasma (\Leftrightarrow ideal gas)
 $\gamma = 5/3$ and $v_1/v_2 = 4$

⇒ Rapid gain in energy as particles repeatedly cross shock front

 Δ E/E α β (~10⁻¹) and E⁻² spectrum

" First order "

Powerful shocks? Supernovae!

(too short) life and (extremely violent) death of massive stars

1 SN II / 50 years in our galaxy

Crab supernova remnant

Energy limitation

Natural limit: containment of particles in acceleration (shock) region $E_{max} \sim Z \ e \ B \ R \ c$ (no energy losses)

Need high B, large R

Supernova remnants:

$$ightarrow$$
 E $_{\text{max}}$ ~ 10 15 eV (knee)

Cosmic rays in 10^{15} - 10^{20} eV region ? \rightarrow Relativistic motions (Γ)

Active Galactic Nuclei

AGN: galaxy with 10⁸ - 10⁹ M_o central black hole 10% - radio jets (relativistic ejection of plasma)

1% - blazars (all EGRET AGNs!)

Cosmic ray detectors

Counting particles: AGASA

Trajectory determined from arrival time of shower front on ground detectors

Cerenkov detectors measure height of shower maximum width (X_{max}) related to primary energy

130 km west of Tokio

extensive air shower

Air fluorescence: Fly's Eye

Spherical mirrors viewed by PMT's at the focal plane

Dual setup allows accurate trajectory reconstruction

Amount of light (with $1/r^2$ correction for geometry)

- \rightarrow shower profile
- → shower maximum Xmax
- → primary energy

Can only operate on clear and moonless nights

13 km apart in Utah desert

Ultra High Energy Cosmic Rays

Puzzling facts

Ultra high energy protons are not confined in galaxy **Isotropy**

Extra-galactic sources

No counterpart (any wavelength)

Cosmological sources

Invisible source?

No GZK cut-off?

Local GRB's Exotica Possible suspects:

Future with AUGER and EUSO

AUGER

Air fluorescence + ground arrays 2 sites (Argentina, USA): 1600 detectors + 4 telescopes, 3000 km² First results (though not all detectors)

EUSO

Air fluorescence from space Expect 10³ CR yr⁻¹ above GZK Launch: 2010 (for 3 years)

Lecture outline

- 1) What is Astroparticle Physics?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Gamma ray astronomy

```
Cosmic accelerators → high energy protons (cosmic rays)
deviated by B up to 10<sup>18</sup> eV
→ high energy photons (gamma rays)
point back to source!

1952 Prediction of HE gamma-ray emission of Galactic disk

1958 First detection of cosmic gamma rays (solar flare)

1967 First exhaustive review devoted to gamma-ray astronomy

1968 Detection of Galactic disk and Crab nebula
```

Gamma ray satellites

EGRET (E > 100 MeV)

Galactic diffuse interstellar emission from interaction with cosmic rays

Point sources

- Jets from active galactic nuclei
- Galactic sources in star-forming sites: pulsars, binaries, supernova remnants ...
- Unidentified sources (170/270)

Blazars

Markarian 421: closest blazar

Quasars and Microquasars

QUASAR

MICROQUASAR

 $R \alpha M_{BH}$

T α M_{BH}^{-1/4}

Mirabel & Rodriguez

Gamma ray bursts (GRB)

- 1967 Chance discovery of prompt emission by VELA (16 events), published in 1973
- 1991 Observation with the satellites C.G.R.O (EGRET, BATSE...) & BeppoSAX

brightest objects in the universe, emitting mostly at high E $_$ emission collimated ? wide variety of time profiles, Δt from 10ms to 1000s compact region, Lorentz boost (Γ ~100)

2002 (>2000 bursts) still very poorly understood ...

Burst location

Afterglow in optical

TeV sky

High energy cut-off!

GZK cutoff

Main explanation for lack of TeV sources

GZK cutoff for γ but not for UHECR ?

Lecture outline

- 1) What is Astroparticle Physics?
 Big Bang Nucleosynthesis
 Cosmic Microwave Background
- 2) Dark matter, dark energy
- 3) High energy astrophysics
 Cosmic rays
 Gamma rays
 Neutrino astronomy

Other messengers?

Photons: absorbed (GZK)

```
Neutrons: t \sim 15 \text{ mn}
d_{\text{max}}=10 \text{ kpc} (E=10<sup>18</sup> eV)
```

Protons: absorbed (GZK) & deviated (E<10¹⁸ eV)

Neutrinos: no charge, "no" interaction with matter nor radiation

High energy sources

Experimental challenge

```
Low fluxes @ high E
Low cross-sections

Large volume of detector (lake, sea, polar ice)
```

```
High background (> 1000 (atmospheric \mu & \nu)
```

Good shielding (> 1000m water eq.) Search for upgoing v's

Detection principles


```
\begin{cases} \cdot \text{ Cosmic } \mathbf{v} \text{ (> 1 TeV)} \\ \cdot \chi\chi \rightarrow \mathbf{v} \text{ (10-1000 GeV)} \\ \cdot \text{ Atm. } \mathbf{v} \text{ (10-100 GeV)} \\ \cdot \text{ Atm. } \boldsymbol{\mu} \end{cases}
```

 $v \to \mu \to \text{Cerenkov light}$

HE neutrino experiments

Detectors

Strings with optical modules (PMT in glass sphere)

· d_{OM-OM}: E threshold

• # of OM: E resolution

d_{string-string}: effective volume,
 E limit

Conclusions

```
Cosmic Ray physics
Existence or not of post GZK cut-off events?

Gamma Ray physics
Study of high energy sources (AGNs, blazars)
GRB mystery
```

Neutrino physics

Complementary to photon astrophysics (models confrontations)
Indirect dark matter searches

New look on the Universe \rightarrow room for unexpected discoveries