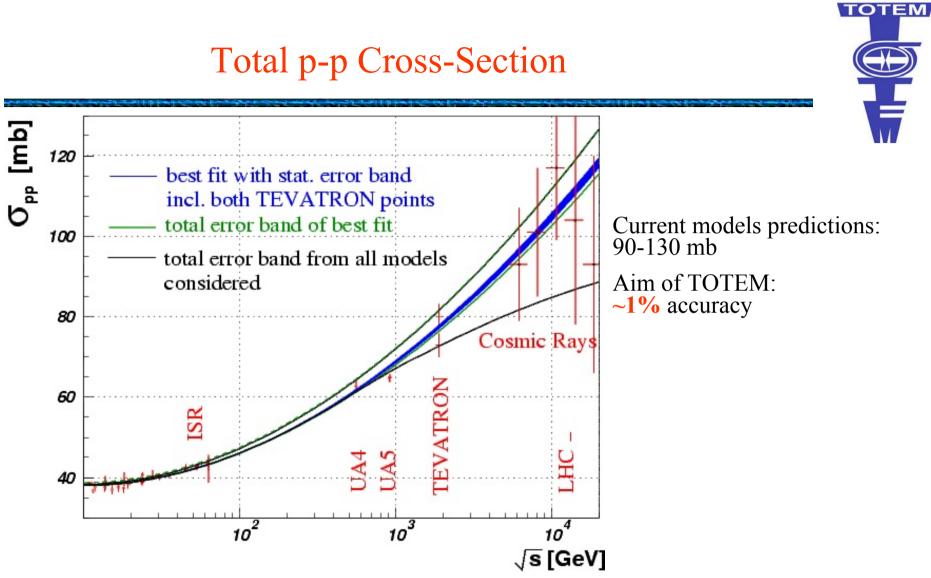
Physics at LHC

The First Year at LHC: Diffractive Physics

Mario Deile

CERN / PH

17.07.2004


- **TOTEM**: approved for:
 - Elastic p-p scattering cross-section d σ /dt in the range 10⁻³ GeV² < -t < 8 GeV²
 - Total p-p cross section at 14 TeV with 1% uncertainty using the Optical Theorem (luminosity independent method)
 - Absolute luminosity measurement
 - Study of diffractive events (together with CMS)
- ATLAS: Letter of Intent:
 - Luminosity measurement using elastic scattering in Coulomb region
 - Interest in diffraction
- ALICE:
 - Interest in diffraction

Running Scenarios

Scenario	1	2	3	4
Physics:	low t elastic,	large t elastic	diffraction	hard
	σ _{tot} , min. bias, soft diffraction			diffraction (under study)
β* [m]	1540	18	1540	200 - 400
N of bunches	43	2808	156	936
N of part. per bunch	0.3 x 10 ¹¹	1.15 x 10 ¹¹	(0.6 - 1.15) x 10 ¹¹	1.15 x 10 ¹¹
Half crossing angle [µrad]	0	160	0	100 - 200
Transv. norm. emitt. [μm rad]	1	3.75	1 - 3.75	3.75
RMS beam size at IP [µm]	454	95	454 - 880	317 - 448
RMS beam diverg. [µrad]	0.29	5.28	0.29 - 0.57	1.6 - 1.1
Peak luminosity [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	3.6 x 10 ³²	2.4 x 10 ²⁹	~ 10 ³¹

COMPETE Collaboration fits all available hadronic data and predicts:

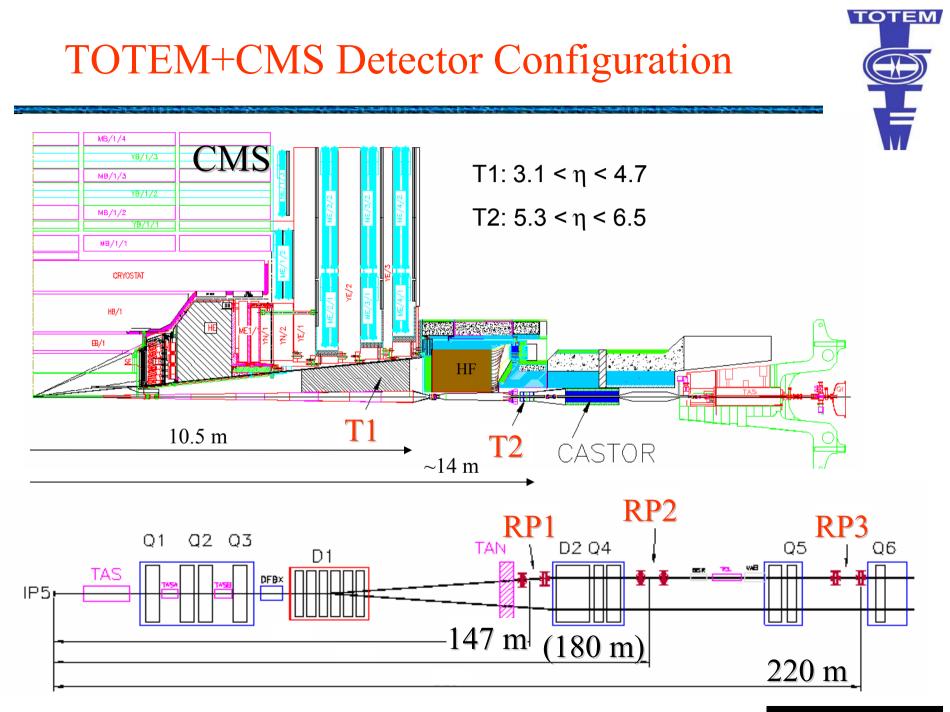
LHC:
$$\sigma_{tot} = 111.5 \pm 1.2 + 4.1 \text{ mb}$$

[PRL 89 201801 (2002)]

TOTEM: Luminosity-independent measurement using the Optical Theorem:

- Measure the total rate $N_{el} + N_{inel}$ with a precision of better than 1% (running for 1 day at $\mathcal{L} = 1.6 \text{ x } 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$).
- Extrapolate the elastic cross-section to t = 0 (0.5 % $\cong 1$ day).

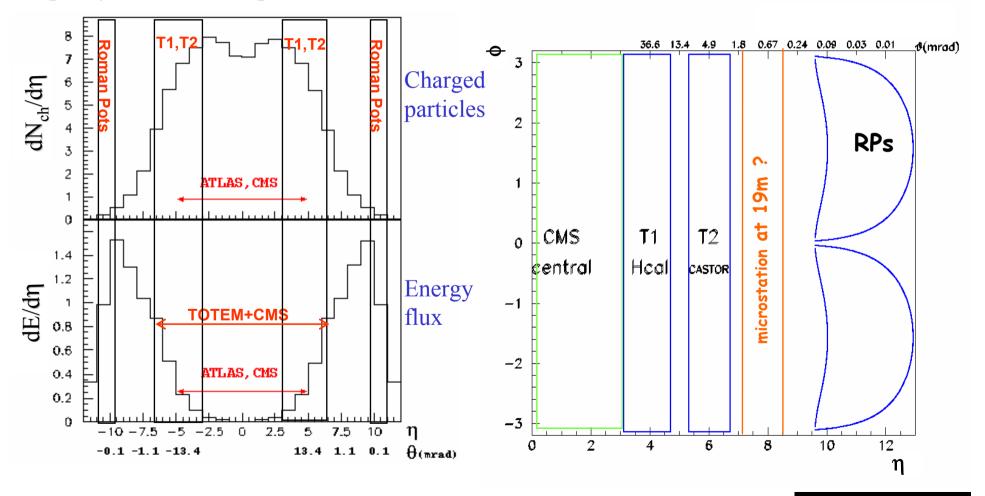
Or conversely: extract luminosity:

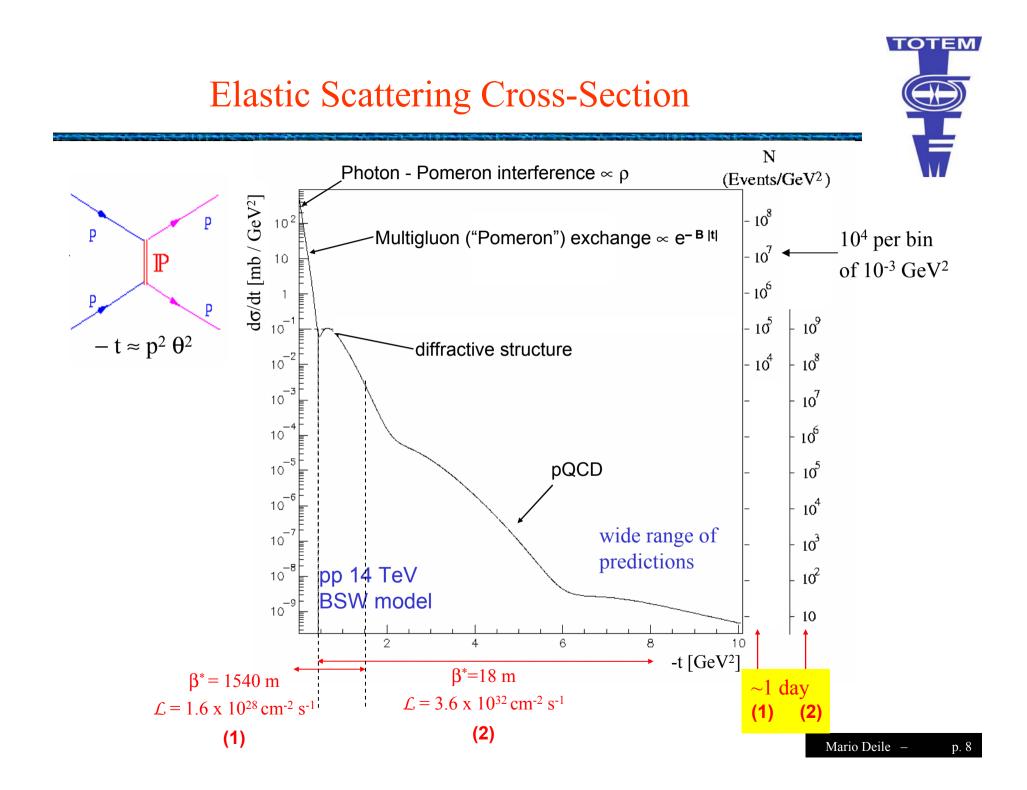

$$\mathcal{L} = \frac{1 + \rho^2}{16\pi} \frac{(N_{el} + N_{inel})^2}{(dN_{el} / dt)|_{t=0}}$$

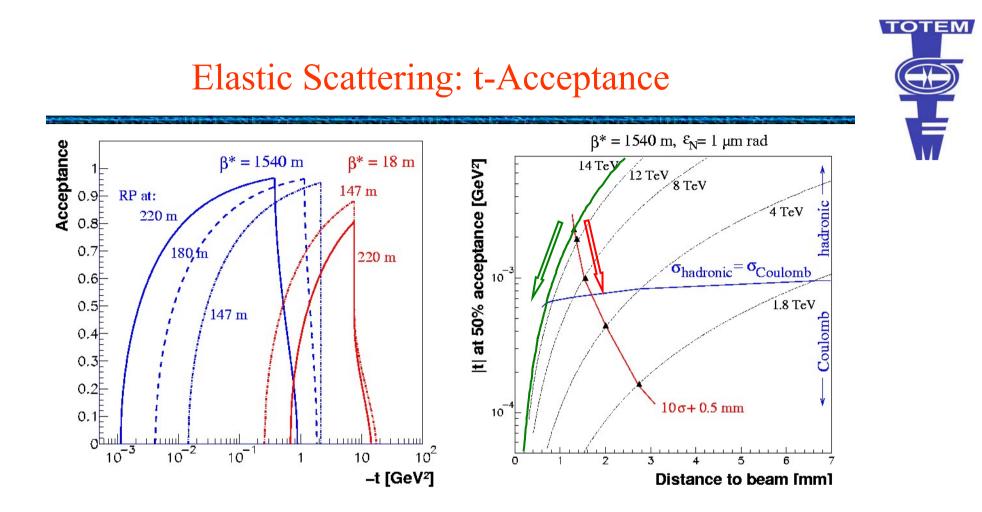
ATLAS approach: try to reach Coulomb region.

Fit
$$\frac{dN}{dt} = \mathcal{L}\pi |f_C + f_N|^2 \approx \mathcal{L}\pi \left| -\frac{2\alpha}{|t|} + \frac{\sigma_{\text{tot}}}{4\pi} (i+\rho) e^{-b|t|/2} \right|^2$$

Required reach in t: $|t|_{\min} \le -t (|f_C| = |f_N|) \approx 6 \times 10^{-4} \text{ GeV}^2$






CMS + TOTEM: Acceptance

Rapidity distributions per inelastic event:

Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than $10 \sigma + 0.5 \text{ mm}$
- run at lower energy p < 14 TeV

$$|\mathbf{t}|_{\min} = \mathbf{p}^2 \, \mathbf{\theta}^2$$

With runs of typically 1 day (repeated several times) at $\beta^* = 1540$ m and 18 m:

- Total cross-section and luminosity measurement to $\sim 1\%$
- Elastic scattering: $5x10^7$ elastic events

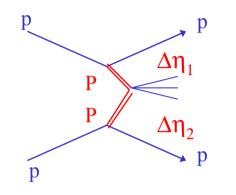
 $d\sigma/dt$ in 10⁻³ GeV² < -t < 8 GeV²

• Try to measure Coulomb/nuclear interference at lower \sqrt{s}

With runs of typically 1 day (repeated several times) at $\beta^* = 1540$ m and 18 m:

- Total cross-section and luminosity measurement to $\sim 1\%$
- Elastic scattering: $5x10^7$ elastic events

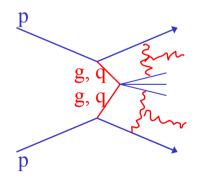
 $d\sigma/dt$ in 10⁻³ GeV² < -t < 8 GeV²


• Try to measure Coulomb/nuclear interference at lower \sqrt{s}

But: We can do more even without taking additional data. At that point already collected:

- $\sim 10^8$ minimum bias events
- $\sim 5 \times 10^7$ elastic events
- $\sim 3.5 \times 10^7$ diffractive events

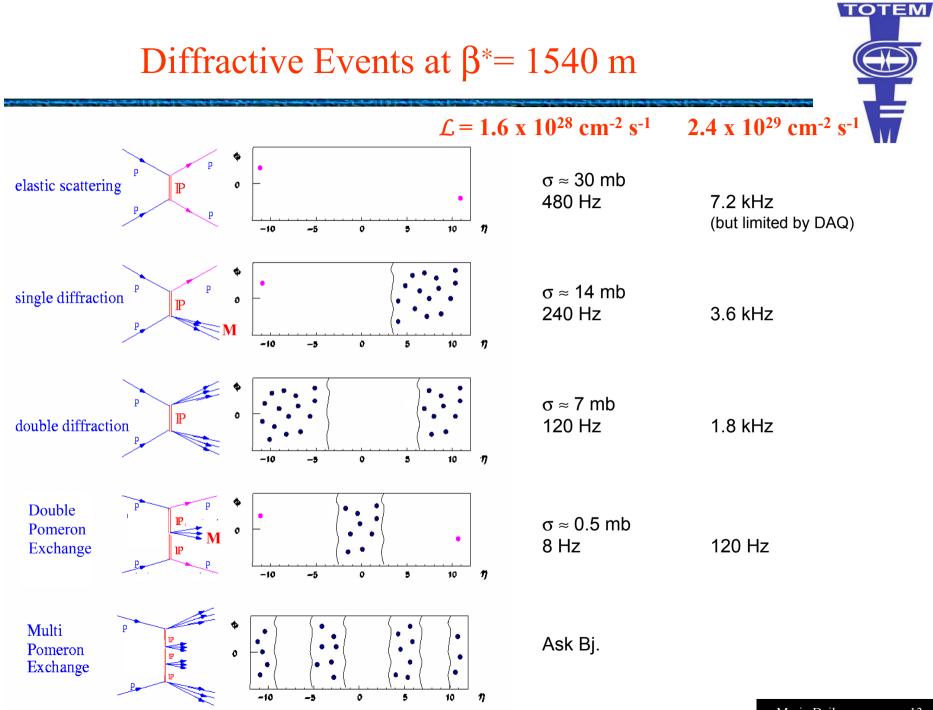
Diffraction


Example:

Exchange of colour singlets ("Pomerons")

→ rapidity gaps $\Delta \eta$ Most cases: leading proton(s) with momentum loss $\Delta p / p \equiv \xi$

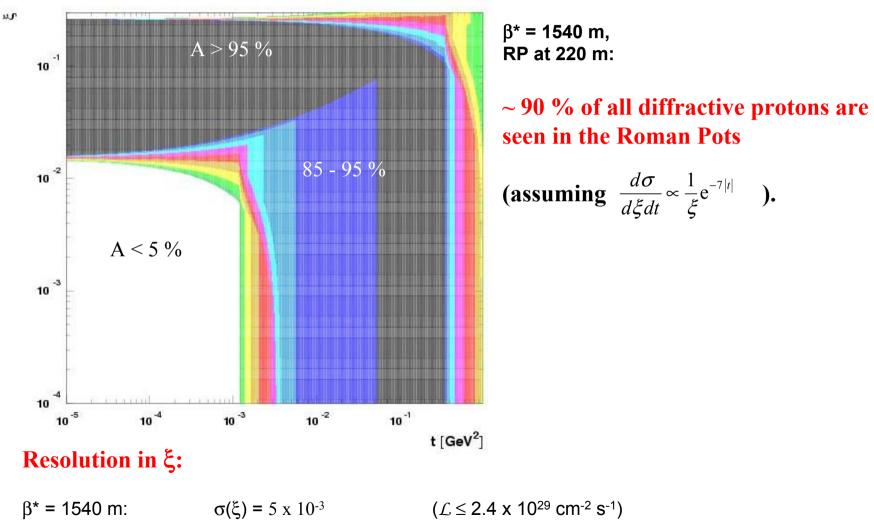
Unlike minimum bias events:



Exchange of colour triplets or octets: Gaps filled by colour exchange in hadronisation

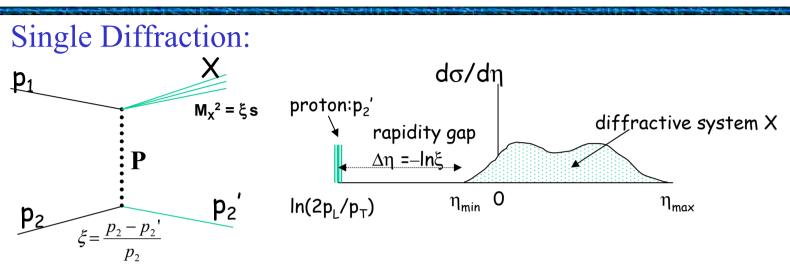
 \rightarrow Exponential suppression of rapidity gaps:

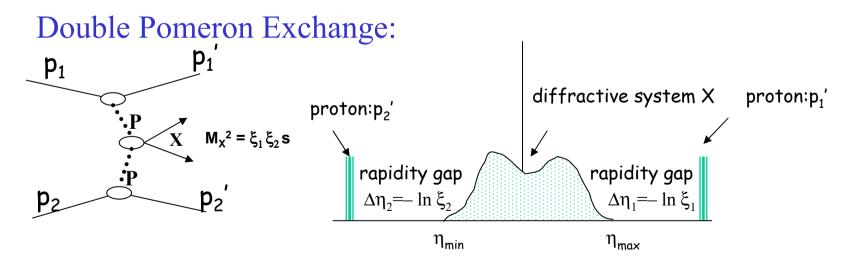
 $\mathbf{P}(\Delta \eta) = e^{-\rho \, \Delta \eta}, \qquad \rho = dn/d\eta$



Mario Deile – p. 13

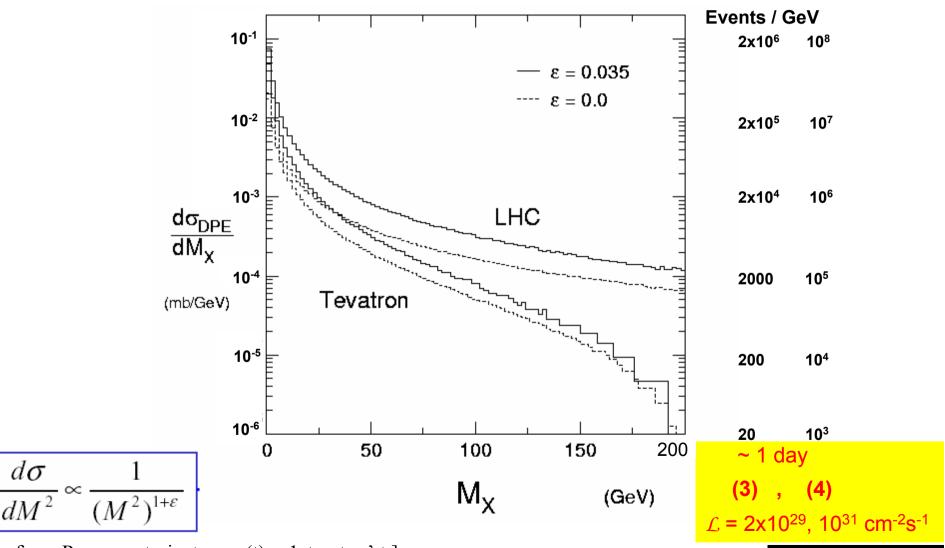
Diffraction at high β^* : Acceptance


Leading protons in diffraction characterised by $t = -p^2 \theta^2$ and $\xi = \Delta p / p$

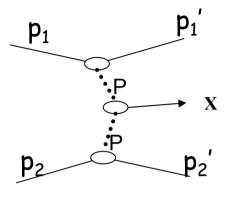

 $\beta^* = 200 \div 400 \text{ m}$: $\sigma(\xi) \sim 1 \ge 10^{-3}$

 $(\mathcal{L} \le 10^{31} \text{ cm}^{-2} \text{ s}^{-1})$

Example Processes



Measure leading proton ($\rightarrow \xi$) and rapidity gap (\Rightarrow test gap survival).

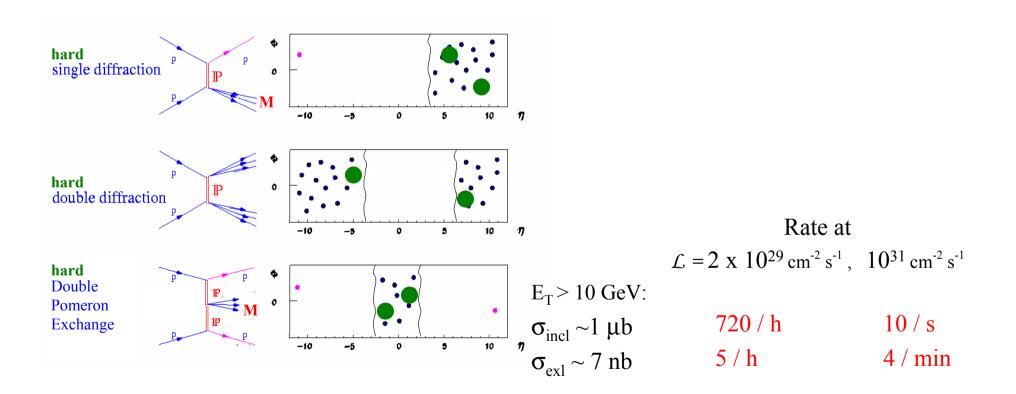

Measure leading protons ($\rightarrow \xi_1, \xi_2$) and compare with $M_X, \Delta \eta_1, \Delta \eta_2$

 $\sigma_{\text{DPE}} = 0.5 - 1 \text{ mb} \Rightarrow (1-2) \text{ x } 10^7 \text{ events per day at } \beta^* = 1540 \text{ m}, \ \mathcal{L} = 2 \text{ x } 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$

[ϵ from Pomeron trajectory $\alpha(t) = 1 + \epsilon + \alpha' t$]

Exclusive Production by DPE

- Advantages:
- exchange of colour singlets with vacuum quantum numbers
 - \Rightarrow Selection rules: J^P = 0⁺, (2⁺, 4⁺); C = +1
 - \Rightarrow reduced background gg \rightarrow qq (0 if m_q = 0 and t_p = 0) constraints on quantum numbers of resonances.
- Good ϕ resolution in TOTEM: determine parity:


 $P = (-1)^{J(+1)} \Leftrightarrow d\sigma/d\phi \sim 1 + (-) \cos 2\phi$

Particle	σ_{excl}	Decay channel	BR	Rate at $2x10^{29}$ cm ⁻² s ⁻¹	Rate at 10^{31} cm ⁻² s ⁻¹
χ _{c0} (3.4 GeV)	3 μb [KMRS]	$\gamma J/\psi \rightarrow \gamma \mu^+\mu^-$ $\pi^+ \pi^- K^+ K^-$	6 x 10 ⁻⁴ 0.018	1.3 / h 39 / h	65 / h 1900 / h
χ _{b0} (9.9 GeV)	4 nb [KMRS]	$\gamma Y \rightarrow \gamma \mu^+ \mu^-$	≤ 10-3	$\leq 0.07 / d$	\leq 3 / d
H (SM) (120 GeV)	$1 \div 10 \text{ fb}$ assume 3 fb	bb	0.68	0.02 / y	1 / y (hopeless)

Higgs needs $\mathcal{L} \sim 10^{33}$ cm⁻² s⁻¹, i.e. a running scenario for $\beta^* = 0.5$ m.

Hard Diffractive Events

Diffractive events with high p_T particles produced

Conclusions, Outlook (2)

With the same data as used for the measurement of σ_{tot} , \mathcal{L} and elastic cross-section: Study soft diffraction:

- 2.4×10^7 single diffractive events
- (1–2) x 10⁶ double Pomeron events

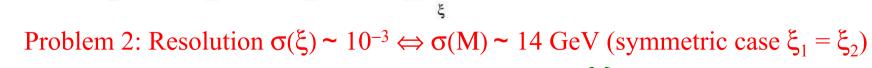
With $\mathcal{L} = 2.4 \times 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$ (scenario 3) and identical optics: Study semi-hard diffraction ($p_T > 10 \text{ GeV}$).

With $\beta^* = 200 - 400$ m optics (under study): hard diffraction at $\mathcal{L} \sim 10^{31}$ cm⁻² s⁻¹:

Some central exclusive production channels within reach.

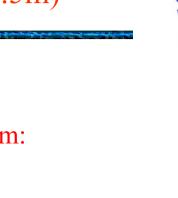
Farther future: develop diffractive running scenario for $\beta^* = 0.5$ m \rightarrow rare events (e.g. Higgs).

and the second states


Statistics of the second second

A REAL PROPERTY OF A REAPROPERTY OF A REAL PROPERTY OF A REAL PROPERTY

Later: Hard Diffraction at high Luminosity ($\beta^* = 0.5m$)


(e.g. exclusive Higgs production via DPE)

Problem 1: Acceptance of 220m Roman Pot station at $\beta^* = 0.5$ m:

M [GeV] (ξ₁ = ξ₂)

Would like leading proton acceptance down to $\xi \approx \frac{M}{\sqrt{s}} \approx 0.8 \times 10^{-2}$ and resolution $\sigma(M) \sim 3 \text{GeV} \Leftrightarrow \sigma(\xi) \sim 2 \times 10^{-4}$.(LHC machine limit)

Rapidity Gap ∆y $\beta^* = 0.5 \text{ m}$ 1.4 $\Delta v = -\ln \xi$ 8 7 14 Rapidity Ga 5 140 4 $y_{max} = 6.5$ 3 1400 RP 2 Trigger 1 0 10⁻³ 10 -2 10-4 10⁻¹

Trigger via Roman Pots $\xi > 2.5 \times 10^{-2}$

Trigger via rapidity gap $\xi < 2.5 \text{ x } 10^{-2}$

TOTEM

Mario Deile – p. 21

Need bigger dispersion.

010

MBB MQML

1. Roman Pots / Microstations further away from IP (308 – 420 m)

DFBL MQML

Q7

220 m

Q4 D2

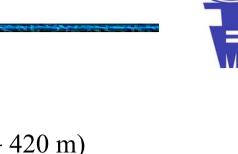
MQY MBRC

Problems:

420 m

MQ MQTL

- Cryogenic region of LHC! Detector installation difficult.
- Long signal propagation time ⇒ no level 1 trigger with RP.
 ⇒ Currently not discussed.
- 2. Local modifications of the beam optics Detectors closer to the beam (microstations?)


308/338 m

Q8

MQNL

Q9

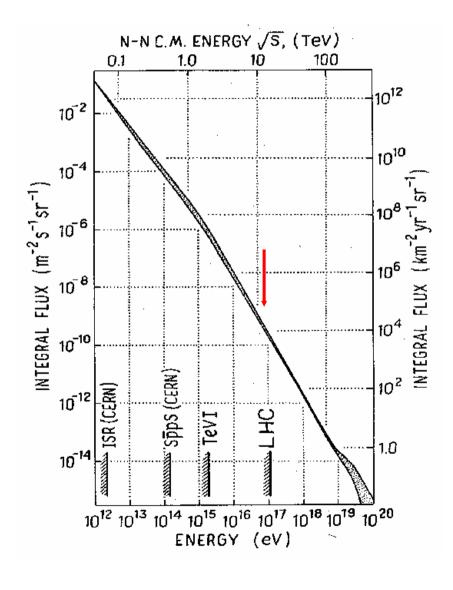
MBP NQM/C

IP5

CMS

02 01

D1



Statistics of the second second

A REAL PROPERTY OF A REAPROPERTY OF A REAL PROPERTY OF A REAL PROPERTY

Measurements of the very forward energy flux (including diffraction) and of the total cross section are essential for the understanding of cosmic ray events.

At LHC *pp* energy:

10⁴ cosmic events km⁻² year⁻¹

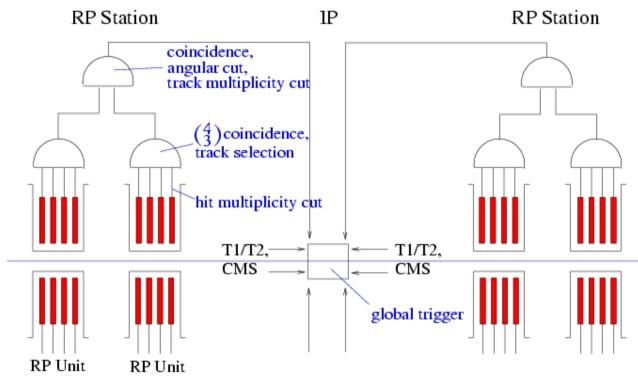
> 10⁷ events at the LHC in one day

Beam Optics for Leading Proton Measurement

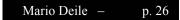
Want to detect leading protons with scattering angles down to a few mrad. Proton trajectory:

$$y(s) = L_y \theta_y^* + v_y(s) y^* \qquad \qquad L(s) = \sqrt{\beta^* \beta(s)} \sin \mu(s)$$
$$x(s) = L_x \theta_x^* + v_x(s) x^* + D_x(s) \xi \qquad \qquad v(s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cos \mu(s)$$

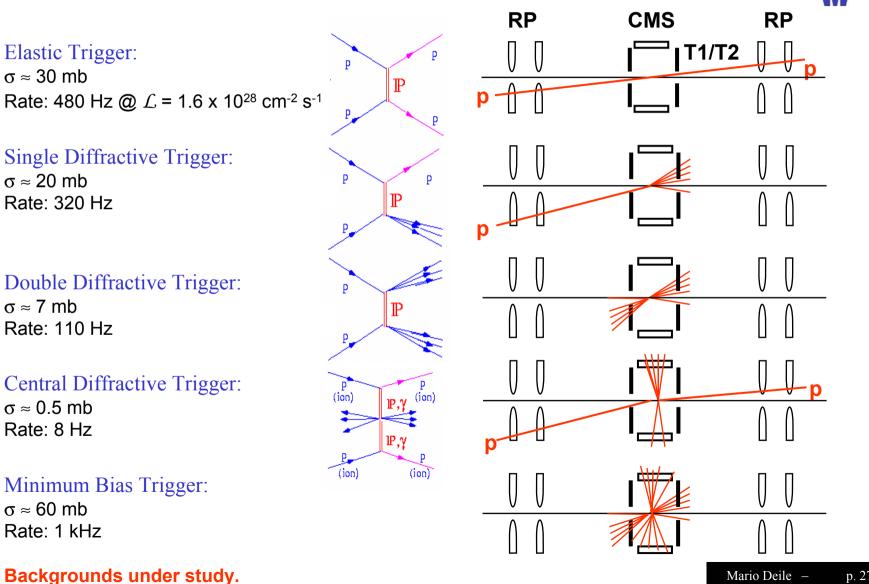
- Maximise $L_x(s_{RP})$, $L_y(s_{RP})$ at Roman Pot
- Minimise $v_x(s_{RP})$, $v_y(s_{RP})$ at Roman Pot
- \Rightarrow High- β^* optics: for TOTEM $\beta^* = 1540$ m (ATLAS: 2625 m)
- $v_x(220m) \approx v_y(220m) \approx 0$, i.e. parallel-to-point focussing in both projections
- good azimuthal resolution
- but: crossing angle = 0, low angular spread (0.3μ rad), wide beam (0.4mm) at IP
- \Rightarrow Danger of parasitical bunch crossings up/downstream from IP
- \Rightarrow Reduce number of bunches (43 and 156 instead of 2808)


 $\mathcal{L}_{\text{TOTEM}} = 1.6 \text{ x } 10^{28} \text{ cm}^{-2} \text{ s}^{-1} \text{ and } 2.4 \text{ x } 10^{29} \text{ cm}^{-2} \text{ s}^{-1}$

Trigger Logic and Background Suppression


Each Roman Pot houses:

- 6 tracking planes (analogue APV 25 readout)
- 4 trigger planes (digital VFAT readout)



Dominant background: beam halo: reduction only by 2-arm coincidence.

T1/T2: beam-gas suppression by vertex reconstruction: $\sigma(r) = 3 \text{ mm}, \sigma(z) = 45 \text{ mm}$

Level-1 Trigger Schemes

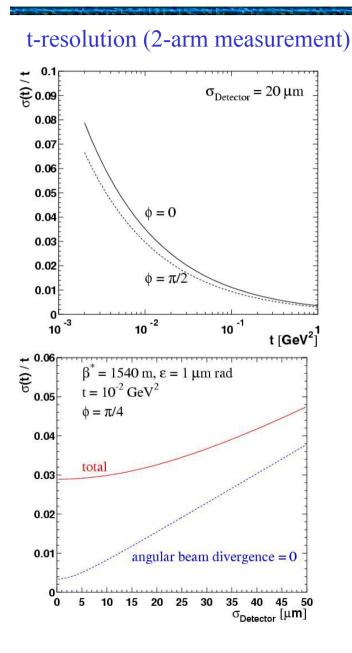
p. 27

Standalone and with CMS

• Standalone running:

only for elastic scattering and total cross-section.

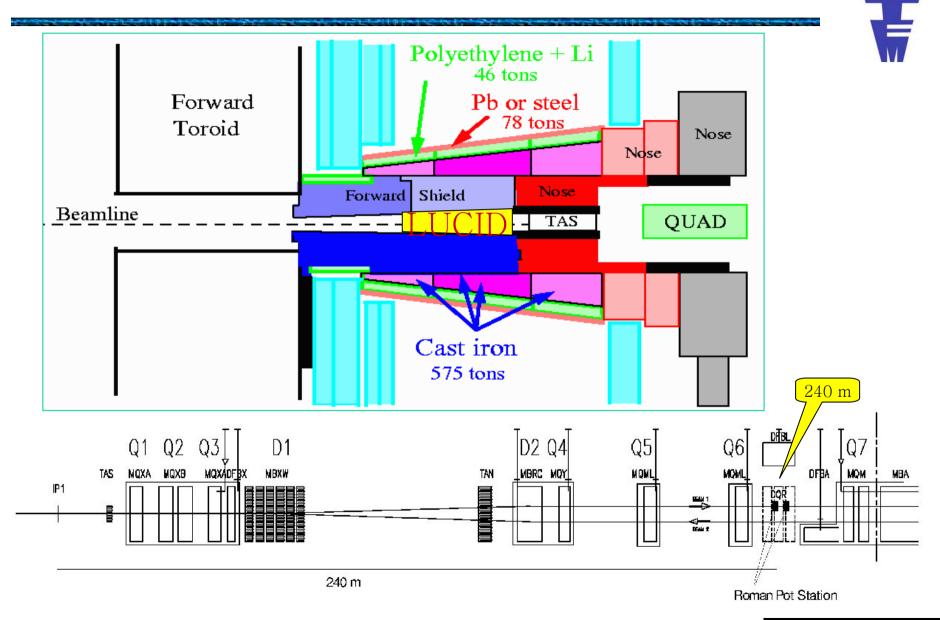
- Common running:
 - DAQ and Trigger will be CMS-compatible (hardware and software)
 - TOTEM can act as a CMS subdetector.
 - TOTEM can trigger CMS at level 1:


Trigger from the Roman Pots must arrive at CMS within the CMS trigger latency:

Very tight for the Pot at 220 m, but still feasible.

Pots farther than 220 m from IP (none foreseen) cannot trigger!

Elastic Scattering: Resolution



φ-resolution (1-arm measurement)

Test collinearity of particles in the 2 arms \Rightarrow Background reduction.

ATLAS Forward Detectors

• TOTEM+CMS:

Trackers, calorimeters: $\eta < 6.5$ Roman Pots for leading protons

• ATLAS:

Calorimeters: $\eta < 5$ LUCID: 5.4 < $\eta < 6.1$ Roman Pots for leading protons

• ALICE:

Muon spectrometer: $\eta < 4$ ZDC for leading neutrons

• LHCb:

Forward spectrometer: $\eta < 4.9$