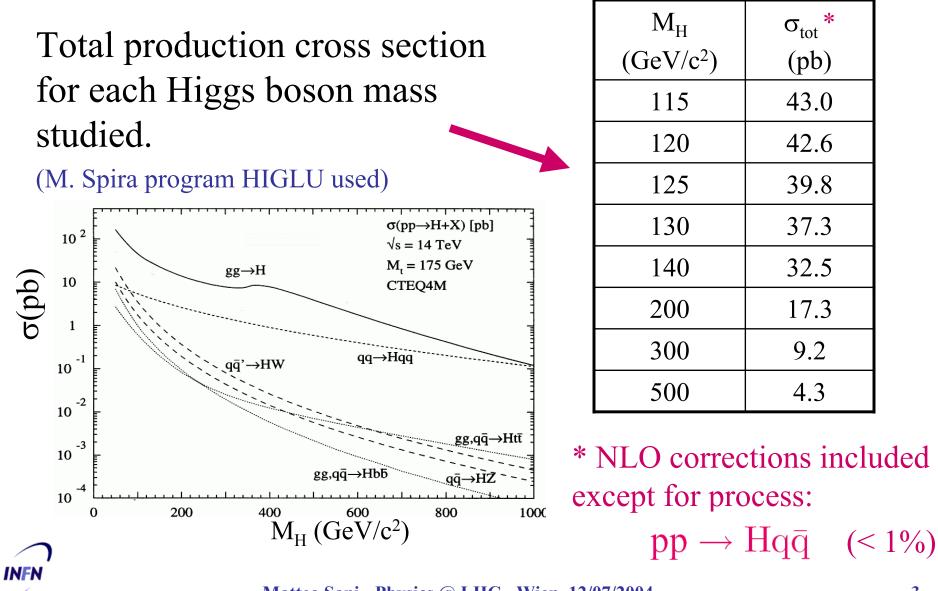
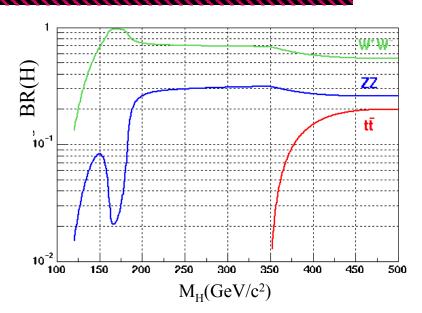


Search for the Standard Model Higgs boson in the decay channel into four muons

Matteo Sani Universita` and INFN Firenze on behalf of CMS Collaboration



- ✓ Signal and main backgrounds
- \checkmark Muon reconstruction
- ✓ Signal selection
- ✓ Visibility of the H→4 μ signal
- ✓ Conclusion



M _H (GeV/c ²)	BR _{TOT}	ک	σ * ξ * BR _{TOT} (fb)
115	9.4 ·10 ⁻⁶	-	0.22
120	1.7 . 10-5	0.53	0.39
125	2.9 . 10-5	0.56	0.64
130	4.3 ·10 ⁻⁵	0.57	0.92
140	7.7 ·10 ⁻⁵	0.60	1.51
200	3.0.10-4	0.67	3.43
300	3.5 · 10-4	0.70	2.27
500	2.9 . 10-4	0.79	1.00

✓ ξ is the acceptance for a final state with four μ with: ✓ $|\eta| < 2.5$ ✓ $p_T > 3.0 \text{ GeV/c}$ ✓ $BR_{TOT} = BR(H \rightarrow 4\mu)$

 $\checkmark ZZ^{(*)} \rightarrow 4\mu$ $\checkmark t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow 4\mu + X$ $\checkmark Zb\bar{b} \rightarrow \mu^+\mu^-b\bar{b} \rightarrow 4\mu + X$ $\checkmark Zc\bar{c} \rightarrow \mu^+ \mu^- c\bar{c} \rightarrow 4\mu + X$

Muons from different proton-proton interactions rejected by a common vertex cut.

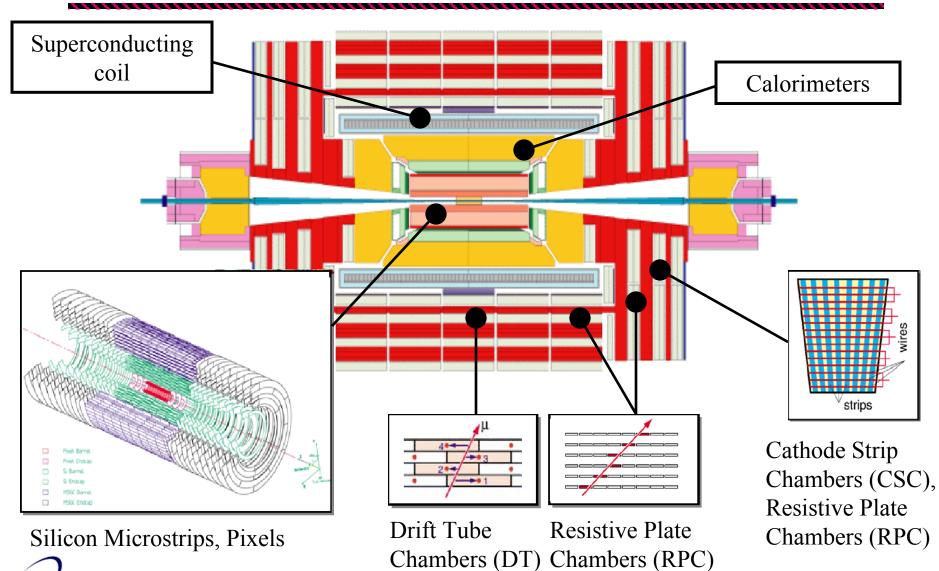
Bg.	σ _{tot} (pb) (NLO)	$\xi * BR_{TOT}$	$\sigma * \xi * BR_{TOT}$ (fb)
ZZ ^(*)	18.2	4.60 ·10 ⁻⁴	8.37
$t\overline{t}$	886	4.63 ·10 ⁻⁴	410.2
$\mathrm{Zb}ar{\mathrm{b}}$	525(*)	2.45 ·10 ⁻⁴	129.1
Zcē	1100	< 10 ⁻⁵	//

 ξ is the acceptance for a four μ final state, each one with:

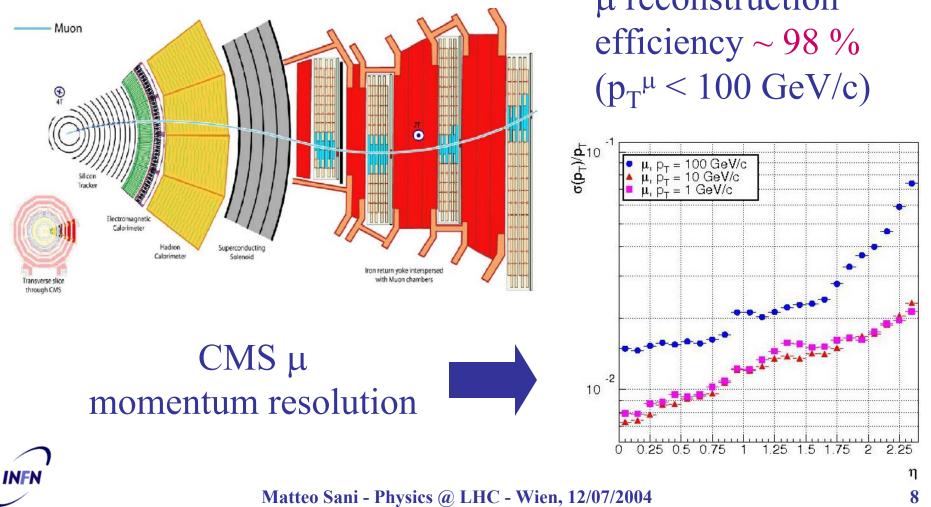
• $|\eta^{\mu}| < 2.5$

•
$$p_{\rm T} > 3.0 \; {\rm GeV/c}$$

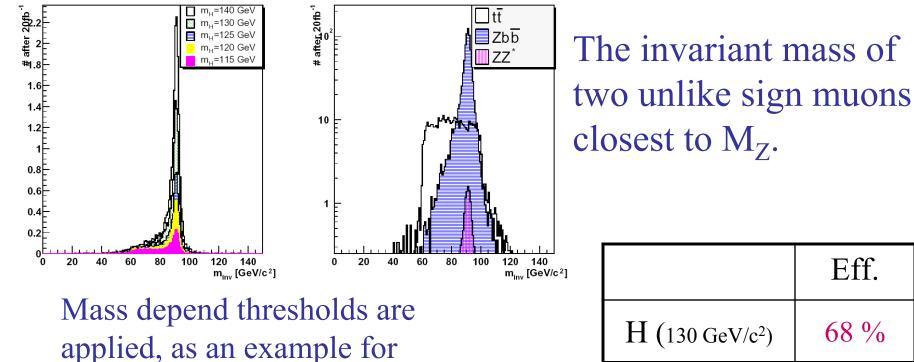
(*) for $|\eta^{b}| < 2.5$


All events generated with PYTHIA except Zbb generated with CompHep generator.

INFN



Precise Higgs reconstruction needs a good muon momentum resolution. µ reconstruction


Since $M_H < 2 M_Z$ signal events are selected by requiring:

- ✓ one muon-antimuon pairs with an invariant mass compatible with a Z hypothesis
- \checkmark high muon transverse momenta
- ✓ four isolated muons

applied, as an example $M_{\rm H} = 130 \text{ GeV/c}^2$:

- $18 < M_{Z^*} < 60 \text{ GeV/c}^2$
- $80 < M_Z < 96.7 \text{ GeV/c}^2$

NFN

Matteo Sani - Physics @ LHC - Wien, 12/07/2004

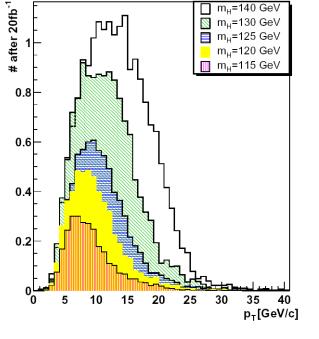
 ZZ^*

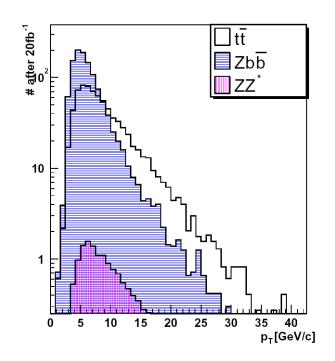
tt

Zbb

47 %

11 %

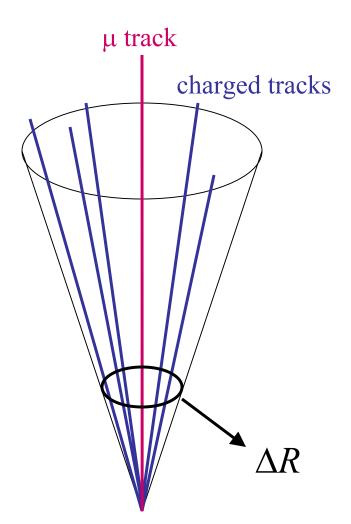

19 %



pT of the muon with the lowest pT value. Mass dependent thresholds: for $M_H = 130 \text{ GeV/c}^2$

15, 12, 12, 8 GeV/c

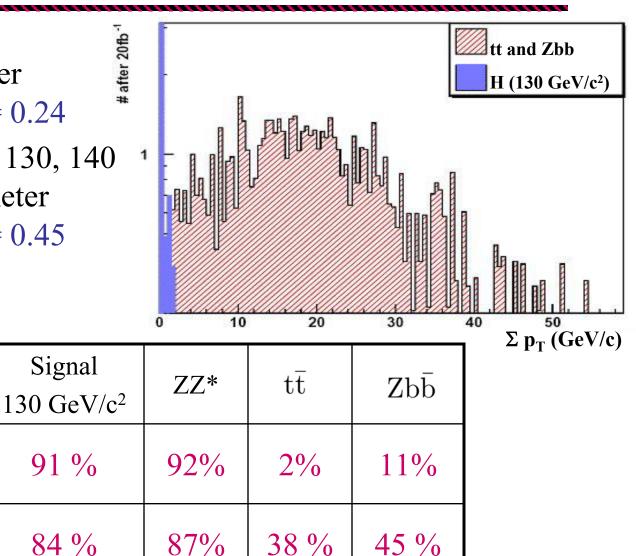
	Signal 130 GeV/c ²	ZZ*	$t\overline{t}$	${ m Zb}ar{ m b}$
Efficiency	72 %	59 %	45 %	17 %



Isolation ($M_H < 2M_Z$)

- ✓ define a cone $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ around muon direction ✓ for the muon to be isolated (in the tracker) demand the sum of
 - the transverse momenta of the charged tracks (with the same vertex) in the cone was less than a given threshold:

$$\sum p_t < p_t^{\max}$$


- ✓ For all masses tracker isolation used: $\Delta R = 0.24$
- ✓ For the masses 125, 130, 140 GeV/c^2 also calorimeter isolation used: $\Delta R = 0.45$

Tracker iso

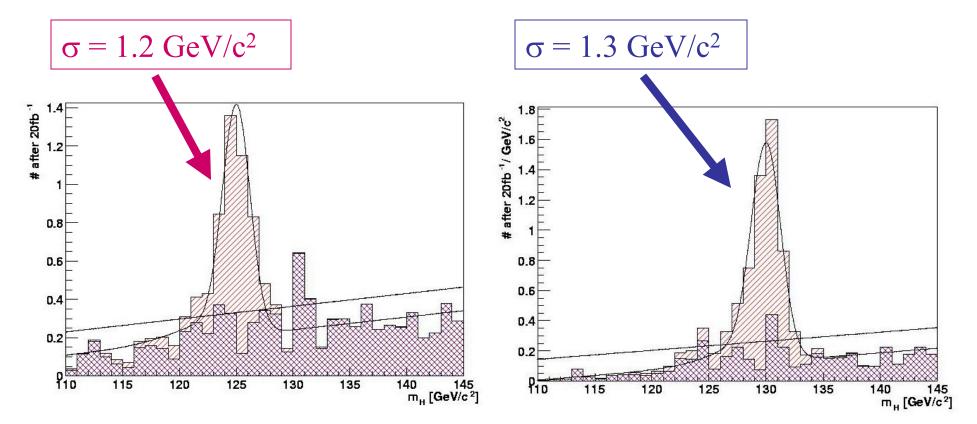
 $(p_T > 4.0)$

Calo iso

 $(E_T > 11.5)$

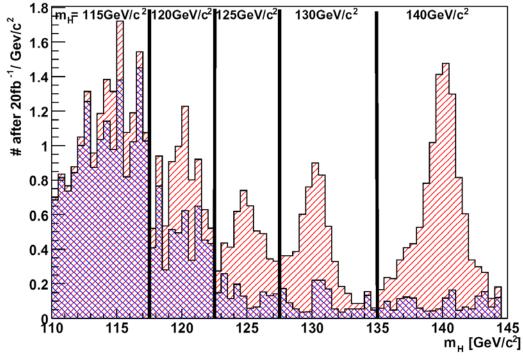
Matteo Sani - Physics @ LHC - Wien, 12/07/2004

Signal


91 %

84 %

The Higgs mass resolution is dominated by the momentum resolution of the CMS detector for $M_{\rm H} < 200 \ {\rm GeV/c^2}$


INFN

Matteo Sani - Physics @ LHC - Wien, 12/07/2004

Final cross sections for signal and background in a mass window of $\pm 2\sigma_{\rm H}$.

M _H	signal	bg.
(GeV/c^2)	(fb)	(fb)
115	0.08	0.50
120	0.14	0.25
125	0.18	0.05
130	0.23	0.03
140	0.39	0.05

Invariant mass distribution for $\mathcal{L} = 20$ fb⁻¹, after the selection described above for signal and background.

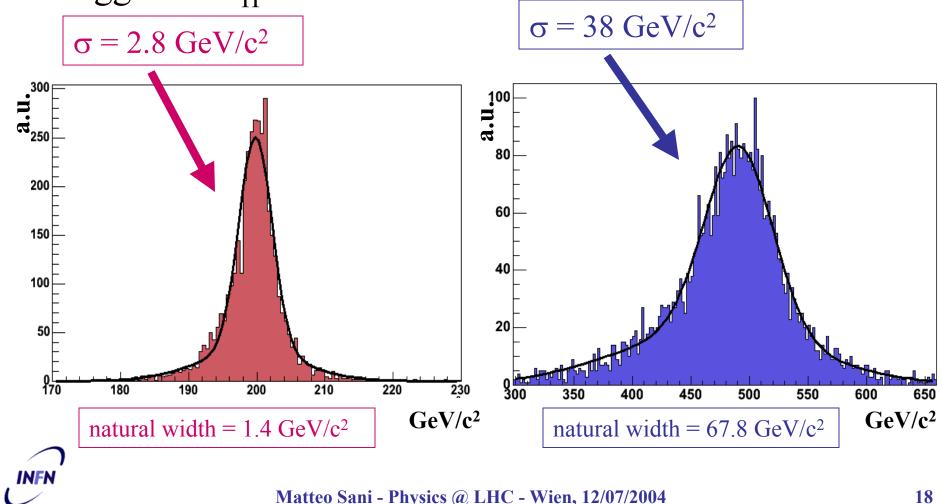
Since $M_H > 2 M_Z$ signal events are selected by requiring:

- ✓ two muon-antimuon pairs with an invariant mass compatible with a Z hypothesis
 - thus rejecting $\mathrm{t}\bar{\mathrm{t}}~$ and $\mathrm{Zb}\bar{\mathrm{b}}$ events almost completely
- \checkmark high muon transverse momenta
- \checkmark high p_T of the Higgs candidate

 p_T of the four μ system

✓ high $p_T^{4\mu}$ is due to higher order processes with one or more partons in the final state

✓ such processes are more probable for gluon-gluon interactions such as $gg \rightarrow H$

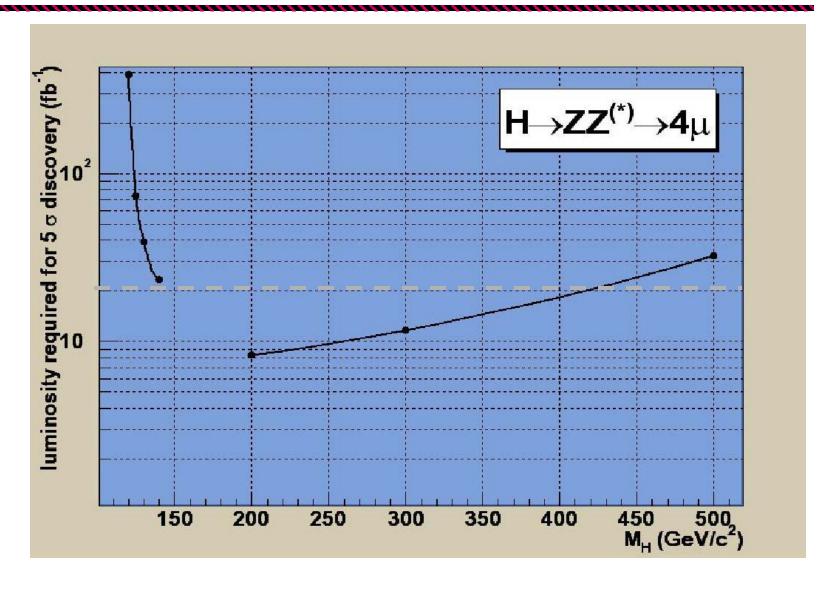

✓ since ZZ comes mainly from $q\bar{q}$ annihilation a softer $p_T^{4\mu}$ distribution is expected for this background

The resolution is dominated by the natural width of the Higgs for $M_{\rm H} > 200 \text{ GeV/c}^2$

Final cross sections for signal and background in a mass window of $\pm 2\sigma_{\rm H}.$

			$\begin{array}{c} 22 \\ 20 \\ 9 \\ 9 \\ 9 \\ 18 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$
M _H	Signal	bg.	⁶ 16 14 14
(GeV/c^2)	(fb)	(fb)	
200	1.12	0.14	
300	0.79	0.11	
500	0.38	0.09	
	•		」

A random example of expected invariant mass distribution for $\mathcal{L} = 20$ fb⁻¹, after the selection described above.



Matteo Sani - Physics @ LHC - Wien, 12/07/2004

Luminosity for S = 5

$M_{\rm H} ({\rm GeV/c^2})$	Ns	Nb	S
115	1.6	10.0	0.6
120	2.8	5.1	1.2
125	3.6	1.0	2.7
130	4.6	0.7	3.6
140	7.8	1.1	4.7
200	22.4	2.7	8.2
300	15.9	2.1	6.7
500	7.6	1.7	4.0

Significances S are calculated using Poisson distribution for one year running at low luminosity.

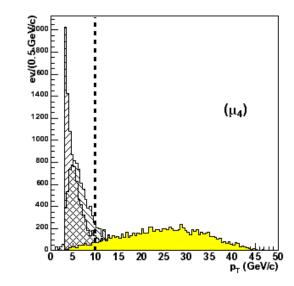
- ✓ The very good momentum resolution achievable with the CMS detector can be fully exploited in the study of the channel: H → $ZZ^{(*)}$ → 4µ
- ✓ An Higgs with a mass from 200 up to about 400 GeV/c² could be discovered with this channel in less than one year of low luminosity of data taken at LHC.
- ✓ Few years are needed for a Higgs with a mass between 125 and 140 GeV/c².

Back up slides

- Online selection of signal events in CMS relies on single muon and dimuon triggers
- Trigger thresholds are
 - 19 GeV/c for single muon trigger
 - 7 Gev/c for dimuon trigger
- ✓ Only in a fraction of $2*10^{-3}$ of signal events those requirements are not satisfied by µ's in $|\eta| < 2.1$
- Inefficiency of online selection expected below
 1% therefore neglected

M _H (GeV/c ²)	Signal	ZZ	$t\overline{t}$	$\mathrm{Zb}ar{\mathrm{b}}$
115	90 %	91 %	3 %	25 %
120	90 %	91 %	2 %	19 %
125	85 %	84 %	1 %	6 %
130	77 %	80 %	1 %	3 %
140	80 %	78 %	1 %	3 %

Final efficiencies on signal and background after the selection described above.


 $\left| m_{\mu^+\mu^-} - M_Z \right| < 8.0 \, \text{GeV/c}^2$

	Eff.
H (200 GeV/ c^2)	71 %
H (300 GeV/c^2)	69 %
H (500 GeV/ c^2)	67 %
ZZ	53 %
$t\overline{t}$	< 1 %
Zbb	< 1 %

 p_T distribution of the four muons sorted in decreasing order.

Applied thresholds are:

20, 15, 15, 10 GeV/c

Matteo Sani - Physics @ LHC - Wien, 12/07/2004

	$Z \text{ mass} + p_T$	$p_T^{4\mu}$
$t\overline{t}$	0.04 %	0.04 %
$ m Zbar{b}$	0.1 %	0.1 %
ZZ	35.1 %	14.9 %
H (200 GeV/c ²)	48.7 %	36.9 %
H (300 GeV/c ²)	51.2 %	41.9 %
H (500 GeV/c ²)	50.6 %	43.8 %

Final efficiencies on signal and background after the selection described above.

Significance (Poisson)

In the limit of large bg. events:

$$S = \frac{N_s}{\sqrt{N_b}}$$

Since we are not in that limit the significance is calculated using:

$$S_L = \sqrt{2 \ln Q}$$

$$Q = \frac{\mathsf{L}_{S+B}}{\mathsf{L}_{B}} = \left(1 + \frac{N_{s}}{N_{b}}\right)^{(N_{s}+N_{b})} e^{-N_{s}}$$

 $S_{I} = 5$ corresponds to 50 % discovery probability.