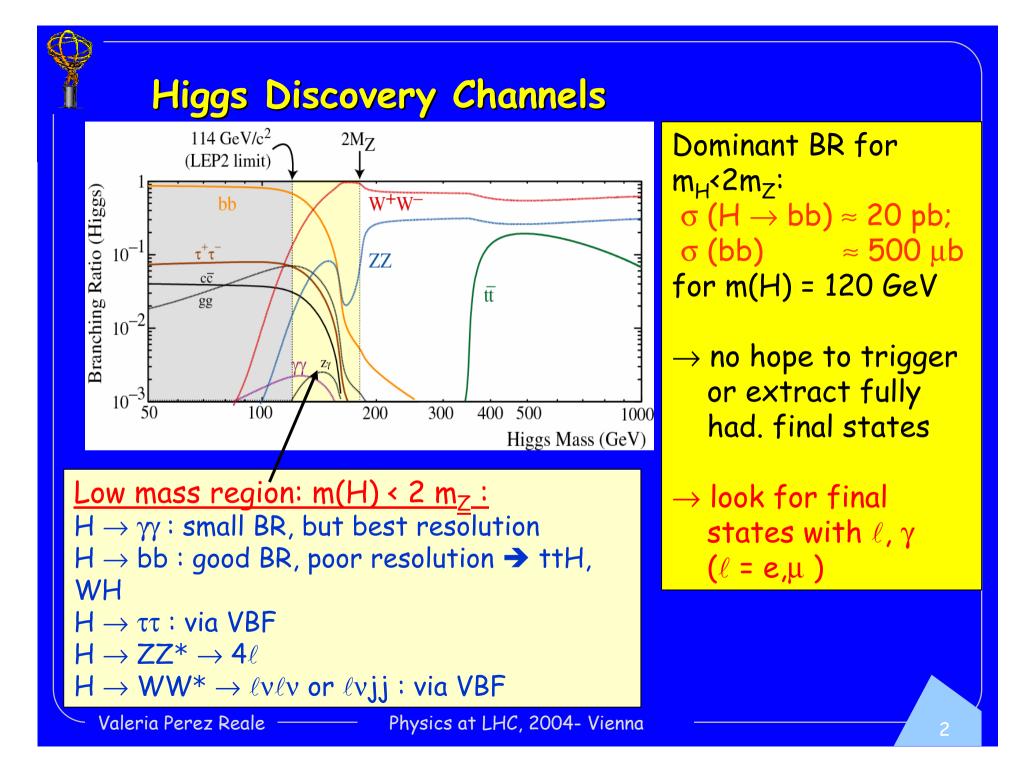


13-17 July 2004 . Vienna . Austria

ATLAS: Triggering for Higgs

Valeria Perez Reale University of Bern



On behalf of the ATLAS Collaboration

SM Higgs Discovery Channels
ATLAS High Level Trigger
Trigger & Physics Selection
Higgs Channels: Physics Performance

Vienna, July 13 2004

Physics at LHC 04

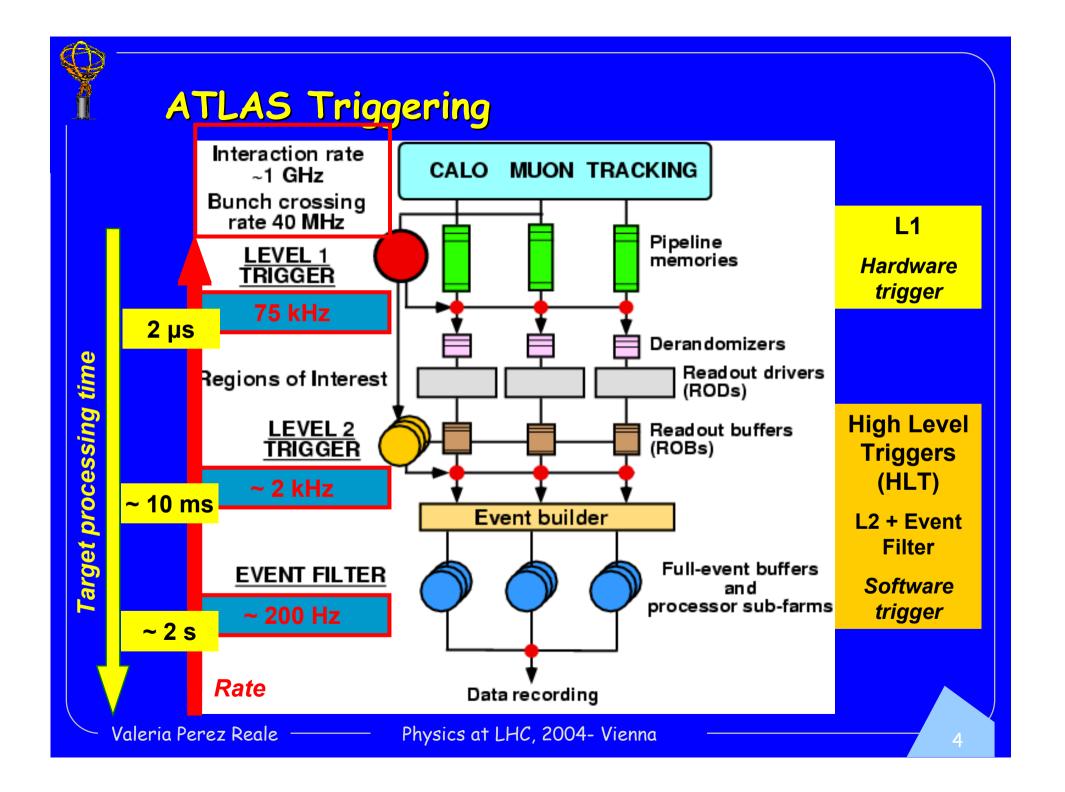
LHC Physics and Trigger Requirements

Fermilab SSC Highly hermetic and granular CERN LHC detectors

Barge particle 10⁹ E710 multiplicity \rightarrow huge data volume! UA4/5 Average event size 1.5 MB obb 107 1 mb • 25 ns bunch spacing \rightarrow high rates! CDF UAL 105 Data throughput α (proton - proton) q μ τ q μ τ σjet At detectors (40 MHz) (equivalent to) PB/s E -0.25 TeV 103 --> LVL1 Accepts 100 GB/s--> Mass storage 300 MB/s 5 (W -+ EV) CDF (pp) 10 UA1/2 Number of overlapping events per $\sigma_{\overline{q}\overline{q}}(m_{\overline{q}} = 500 \text{ GeV})$ CDF/DO 10⁻¹ oti bunch crossing: 23 (1 · 10³⁴ cm⁻²s⁻¹) m_{top} = 174 GeV m _____ = 175 GeV 0 H m_H= 100 GeV 1 pb Low cross sections for discovery 10-3 m_= 1 TeV physics (e.g., Higgs production) \rightarrow = 500 Ge Rejection power 10^{13} (H-> $\gamma\gamma$ 120 GeV) 0.001 0.01 0.1 1.0 10 100 √s TeV

Physics at LHC, 2004- Vienna

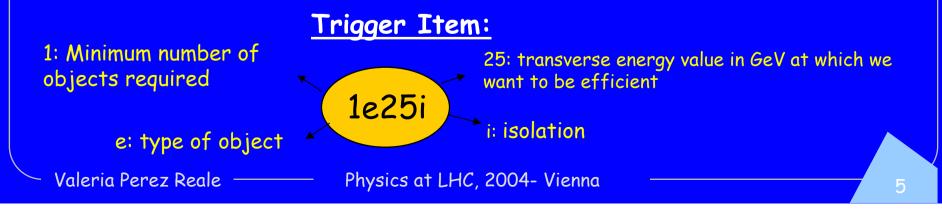
5-T


, m

1034

3

þ


Events / s

Trigger Requirements

Mostly inclusive high p_T trigger selections with relatively low- p_T thresholds for fundamental objects (e.g leptons)

- Cover all SM topologies and those expected from new physics
- ✓ Be sensitive to presently unknown new physics
- ✓ Keep safety margin against uncertainties
 - Knowledge of (background) cross-sections (factor 2-3)
 - Real detector behavior, beam-related (and other) backgrounds
 - Performance of the selection software

Inclusive Trigger Selection (HLT)

Object	Examples of physics coverage	Low Luminosity 2*10 ³³ cm ⁻² s ⁻¹	Rates (Hz)
Electrons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top	e25i, 2e15i	~40
Photons	Higgs (SM, MSSM), extra dimensions, SUSY	γ <mark>60, 2γ20</mark> i	~40
Muons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top	μ20i, 2μ10	~40
	Rare b-decays (B→μμΧ, B→JΨ(Ψ')X)	2μ6 + μ⁺ μ⁻ + mass cut	~25
Jets	SUSY, compositeness, resonances	j400, 3j165, 4j110	~20
Jet+missing E_{τ}	SUSY, leptoquarks	j70 + ×E70	~5
Tau+missing E _T	Extended Higgs models (e.g. MSSM), SUSY	τ 35i + ×E45	~10
Others Prescaled, calibration, monitoring			~20
Total HLT Output Rate			~200
Triscon monute will evolve continuously with time to peffect our boot.			

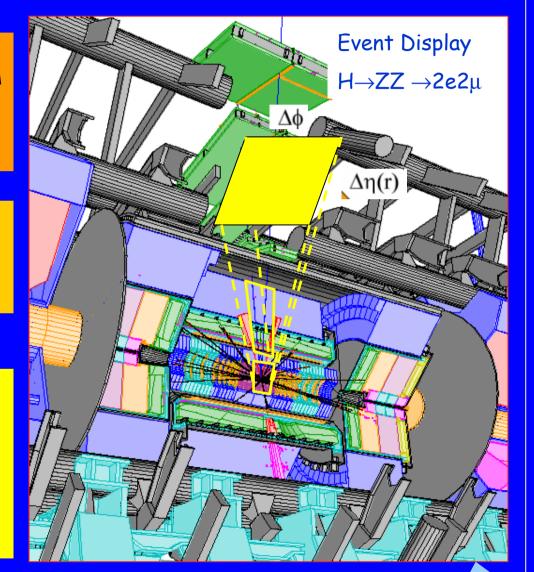
Trigger menus will evolve continuously with time to reflect our best knowledge of the physics and the <u>detector</u>

Valeria Perez Reale

Electron Trigger Selection

-Region of Interest (η, ϕ , pT and energy sum of candidate object) -Coarse granularity info from calorimeter

-Seeded by L1 RoI -Full granularity -Calo (shower shape) and tracking


EF tracking

L1 calo

L2 calo

L2 tracking

-Seeded by L2 or full event access -refined alignment and calibration data -Calorimeter and tracking - offline-like algorithms

The following SM Higgs channels in the low mass range with e/gamma decays have been studied:

Higgs Channel	Low Luminosity	High Luminosity
$H \rightarrow ZZ^* \rightarrow eeee$	e25i or 2e15i	e30i or 2e20i
$H \rightarrow ZZ^* \rightarrow 2e2\mu$	e25i , 2e15i	e30i or 2e20i
$H \rightarrow \gamma \gamma$	γ <mark>60i</mark> , 2γ20i	γ60i , 2γ20i

Low Luminosity: $2 \cdot 10^{33}$ cm⁻²s⁻¹ High Luminosity: $1 \cdot 10^{34}$ cm⁻²s⁻¹

•Event samples were simulated with Pythia 6.2 and with Geant3 full simulation of the ATLAS detector and fully reconstructed including electronic noise and pile-up:

•10⁷ QCD dijet events for background optimization of rates/efficiencies and 10⁴ signal events

• The trigger efficiencies of the Higgs processes are for the decay leptons in the geometrical acceptance of $|\eta| < 2.5$ (region of precision physics)

<u>Trigger efficiency</u>: e/γ accepted in a phase space region in η and p_T . <u>Overall Trigger Efficiency</u>: acceptance in the whole phase space region

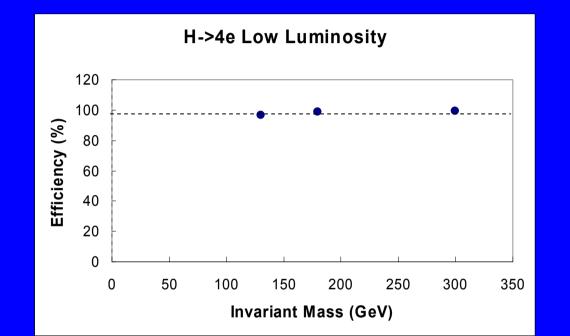
Electron/Photon Trigger

Trigger Selection is performed on an event basis and includes the double and single object trigger items for electrons and photons.

<u>Trigger Efficiency Rate</u>	e25i low luminosity			
e25i 76.2 % 46 ±4 Hz (low)	Trigger Efficiency Rates			
	Selection (%)			
Energy Scan 7-80 GeV electrons	L1 95.5 ± 0.2 8.6 kHz			
0.9	L2Calo 92.9 ± 0.3 1.9 kHz			
0.8 ⊨ □ 0.7 −	• EFCalo 90.0 ± 0.4 1.1 kHz			
	EFID 81.9 ± 0.4 108 Hz			
5 0.3 5 0.4 - •	EFIDCalo 76.2 ± 0.4 46 Hz			
1 1 1 1 1 1 1 1	² V 50% of the clusters come from real electrons			
<u>Trigger Efficiency Rate</u>				
Efficiency has flat distribution for high E_{τ} 2e15i 60% few Hz				
Valeria Perez Reale — Physics at LHC, 2004- Vienna 10				

<u>Kinematical cuts</u>: 2 isolated electrons pt>20GeV & 2 isolated electrons pt> 7 GeV in $|\eta| < 2.5$ <u>Trigger Items</u>: e25i or 2e15i (low) e30i or 2e20i (high) <u>Main background</u>: ZZ \rightarrow 4e and $\tau\tau$ II Reducible: tt, Zbb.

Geometrical acceptance: 47 %


Trigger	Luminosity	Higgs		Trigger Selection	Eff(%) low	Eff(%) high
		eff. (%)		LVL1	99.6	99.2
e25i	Low	96.5				
2e15i	Low	95.8		L2Calo	99.4	98.9
e25i or 2e15i	Low	96.7	\square	EFCalo	98.5	97.8
e30i	High	95.0	ŕ	EFID	97.7	96.8
2e20i	High	94.5			71.1	70.0
e30i or 2e20i	high	95.5	$ \Box\rangle$	EFIDCalo	96.7	95.5

Valeria Perez Reale

The Higgs efficiency for this electron channel is independent from the Invariant Mass:

130 GeV -> 96.7% 180 GeV -> 98.6% 300 GeV -> 99.4%

Trigger Efficiency in Acceptance Region: 96.7%

Overall Trigger Efficiency: 45.8%

$H \rightarrow ZZ^* \rightarrow 4e$ (130 GeV)

Is the Trigger Analysis rejecting events prematurely?

If an offline analysis is performed less than 1% of the events passing the selection are rejected by the trigger:

 \checkmark Main effect from L1 \rightarrow L1 has poorer energy resolution and coarser granularity

✓ Offline and trigger have slightly different e-ID selection strategy

✓ Better calibration available in offline compared to Level1 and Level2

Trigger selection rejects less than 1% of the events that pass offline analysis \rightarrow Trigger is well setup !!

I H→ZZ	*→2e 2µ (130 GeV)	
<u>Kinematical cuts</u> : 2 & 2 leptons pt> 7 (<u>Trigger Items</u> : e25 e3(<u>Main background</u> : 2	GeV in η < 2.5 5i or 2e15i (low) Di or 2e20i (high)		Geometrical acceptance: 39 %
Thissen	Luminosity	Higgs eff. (%)	✓Muon trigger not
Trigger			
e25i	Low	76.2	included.
			-
e25i	Low	76.2	✓If muon trigger
e25i 2e15i	Low Low	76.2 63.7	-
e25i 2e15i e25i or 2e15i	Low Low Low	76.2 63.7 76.9	 ✓If muon trigger µ20i, 2µ10 and

- Trigger Efficiency in Acceptance Region: 76.9%
- Overall Trigger Efficiency: 29.9%

H→gamma gamma (120 GeV)

<u>Kinematical cuts</u>: 1 γ pt>40 GeV & 1 γ pt> 25 GeV in |η| < 2.4 barrel/endcap crack excluded <u>Trigger Thresholds</u>: γ 60i or 2 γ 20i <u>Main background</u>: jet-jet, γ-jet, γ γ

Trigger	Luminosity	Higgs eff. (%)
γ60i	Low	57
2γ 20i	Low	74
γ 60i or 2 γ 20i	Low	83

- Offline gamma/jet separation is tuned for 80% efficiency independent of η and pT

• Previous complete studies (with older detector layout) showed that less than 1% were rejected prematurely

Trigger Efficiency in Acceptance Region: 83 %

Conclusions

 First complete study of trigger and offline selection of Higgs efficiencies with full detector simulation.

✓ full reconstruction, access to raw data, electronic noise and pile-up, with "final" ATLAS reconstruction software

*Trigger Menus are well setup for the selected Higgs processes with lepton/gamma decays in the low mass region . e.g. H->4e has 97% efficiency.

✓ The Trigger Selection (L1-HLT) rejects less than 1% of the events prematurely.

*Work in progress to assess other Higgs channels with one leptonic decay and muon trigger:

✓ ttH (H->bb), H->ZZ*->4µ, H->WW->Inujj

Ensure that events are well triggered on for other channels or else investigate the possibility of a more exclusive trigger selection: e+Etmiss for VBF channels, Invisible Higgs