
# Study of $H \rightarrow ZZ^* \rightarrow 4\mu$ channel with full ATLAS detector simulation

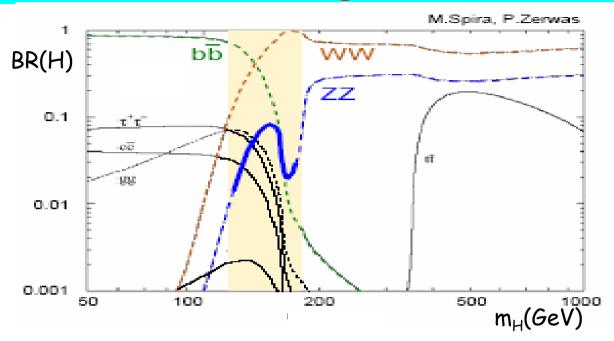
Samira Hassani

DAPNIA/SPP-Saclay France



# 

#### 1) Introduction

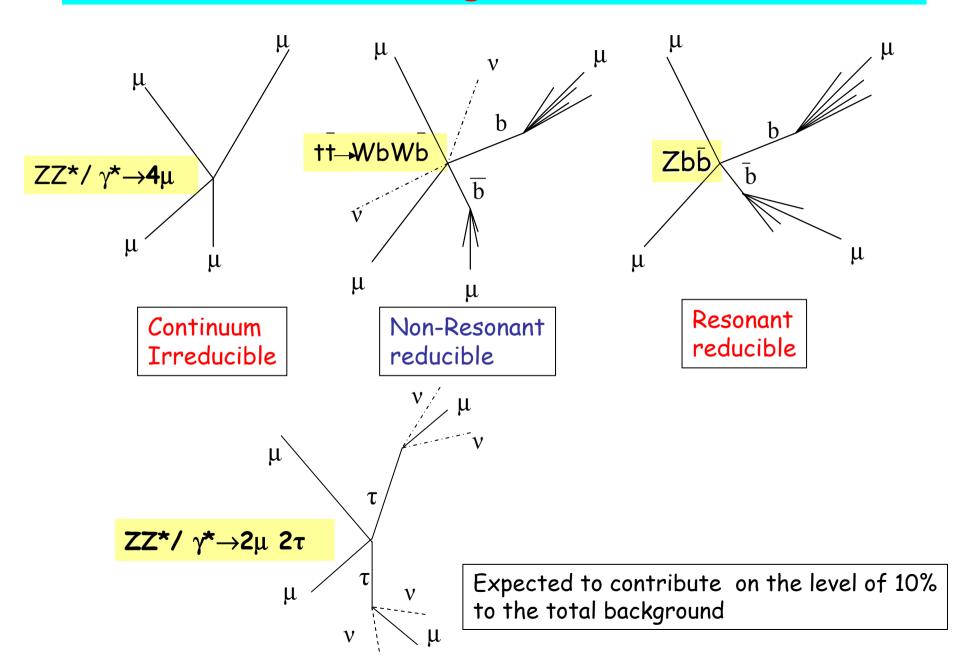

- ✓ Signal and backgrounds
- $\checkmark$  Performance of  $\mu$  detection

#### 2) Analysis steps optimized for low luminosity

- ✓ Higgs mass resolution
- ✓ Background rejection
- ✓ Expected significance

#### 3) Summary

## 1) Introduction: Signal $H \rightarrow ZZ^* \rightarrow 4\mu$




 $\square$  For the mass range 130 <  $m_H$  < 180GeV, the Higgs decays to:

$$\begin{array}{lll} \blacktriangleright H \rightarrow W \ W^* \rightarrow II \ v \ v \\ & \blacktriangleright H \rightarrow bb \\ & \vdash H \rightarrow ZZ^* \rightarrow 4I \end{array} \qquad \begin{array}{ll} (\ E_T miss) \\ & \vdash C \ V \ v \\ & \vdash V V \ v \\$$

 $\blacksquare$  For  $m_H < 2m_Z$ , Higgs is narrow  $\Rightarrow$  good detector resolution in  $\mu$  is essential

## 1) Introduction: Background to H $\rightarrow$ ZZ\* $\rightarrow$ 4 $\mu$



#### 1) Introduction: Background to H $\rightarrow$ ZZ\* $\rightarrow$ 4 $\mu$

| Process                                                                      | σXBR(fb)              | σXBR(fb) used for analysis                           | Events<br>Stored |
|------------------------------------------------------------------------------|-----------------------|------------------------------------------------------|------------------|
| $gg  ightarrow H  ightarrow 4 \mu$ (m=130 GeV)                               | 0.535                 | 0.682 (gg fusion+VBF)                                | 50 K             |
| $gg  ightarrow H  ightarrow 4 \mu$ (m=150 GeV)                               | 1.02                  | 1.325 (gg fusion+VBF)                                | 50 K             |
| $gg  ightarrow H  ightarrow 4 \mu$ (m=180 GeV)                               | 0.573                 | 0.759 (gg fusion+VBF)                                | 50 K             |
| $qq \rightarrow (Z/\gamma^*)(Z^*/\gamma^*) \rightarrow 4\mu$                 | 17.6                  | <b>22.88</b> (1.3 factor account for missing gg→ ZZ) | 115 K            |
| $qq \rightarrow (Z/\gamma^*)(Z^*/\gamma^*) \rightarrow 2\mu 2\tau$           | 35.2                  | <b>45.76</b> (1.3 factor account for missing gg→ ZZ) | 28 K             |
| $gg \rightarrow (Z/\gamma^*)$ bb, with $(Z/\gamma^*) \rightarrow 2 \mu$      | 22.4 x10 <sup>3</sup> | 22.4 ×10 <sup>3</sup>                                | 94 K             |
| gg, qq $\rightarrow$ tt $\rightarrow$ WbWb, with W $\rightarrow$ $\mu$ $\nu$ | 5.73 ×10 <sup>3</sup> | 5.73 ×10 <sup>3</sup>                                | 700 K            |

- > All processes generated with PYTHIA except for Zbb generated with AcerMC (for production and simulation details see ATL-COM-PHY-2003-018)
- >Zbb events dominate at production level (tt events a factor 4 smaller) and contain a genuine Z, which makes their rejection more difficult
- > ~ 1 M events (Data Challenge 1) simulated and reconstructed within the ATHENA framework

## 1) Introduction: First stage of event selection

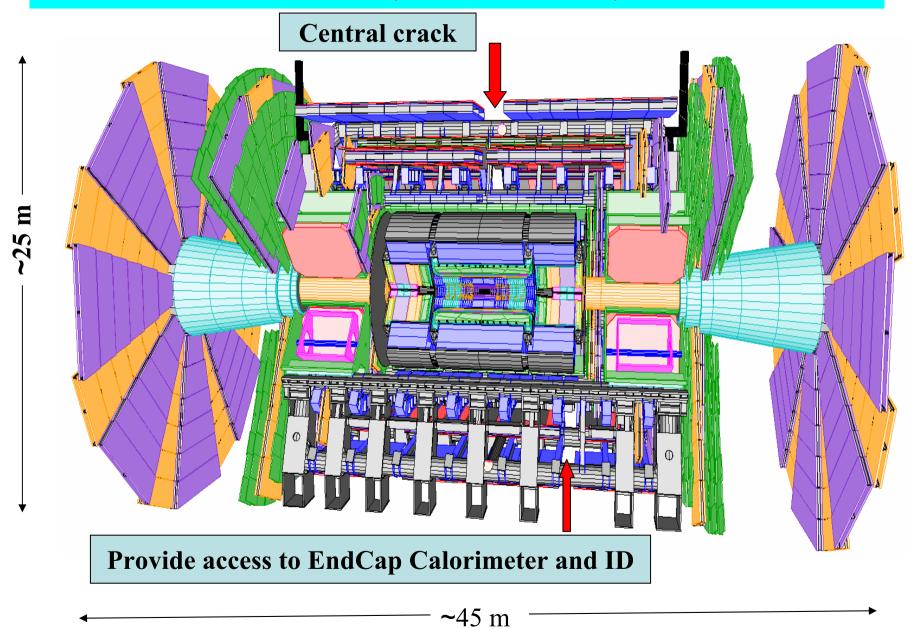
#### kinematic cuts :

✓ Two muons  $P_{\tau}$  > 20 GeV ,  $|\eta|$  <2.5

for Trigger

 $\checkmark$  Two additional muons  $P_T > 7$  GeV ,  $|\eta| < 2.5$ 

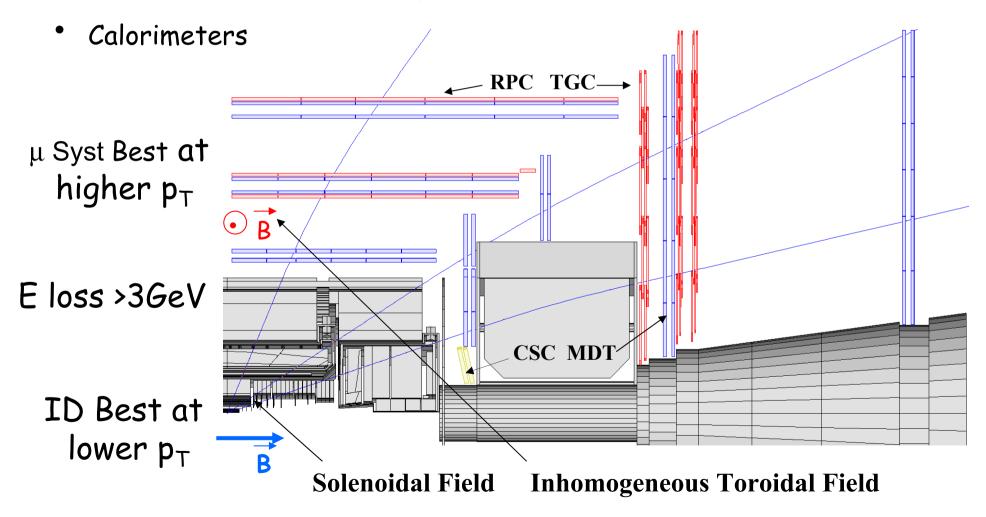
$$\checkmark$$
m12 = M( $\mu$ +  $\mu$ -) = M<sub>Z</sub> ± M Window GeV


against tt background

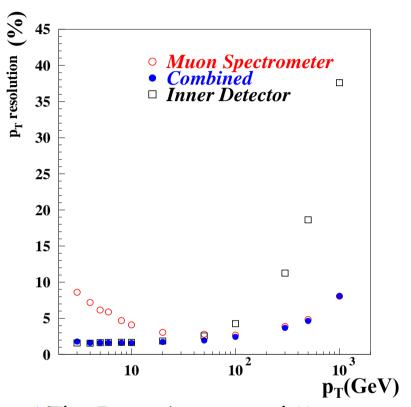
$$\checkmark$$
 m34 = M( $\mu$ +  $\mu$ -) > M<sub>Threshold</sub> GeV

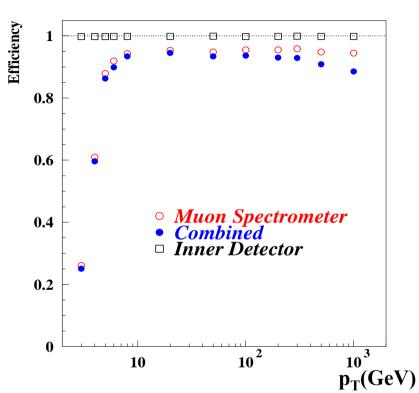
against tt and Zbb cascade decays and  $Z\gamma^*$  background

| Higgs mass (GeV)                 | 130  | 150  | 180  |
|----------------------------------|------|------|------|
| M Window                         | ± 15 | ± 10 | ± 6  |
| $M_{Threshold}$                  | > 20 | > 30 | > 60 |
| Acceptance of kinematic cuts (%) | 35.6 | 44.4 | 55.6 |


#### What's new for Muon System since PhysicsTDR (1999)?




## 1) Introduction: Muon measurement

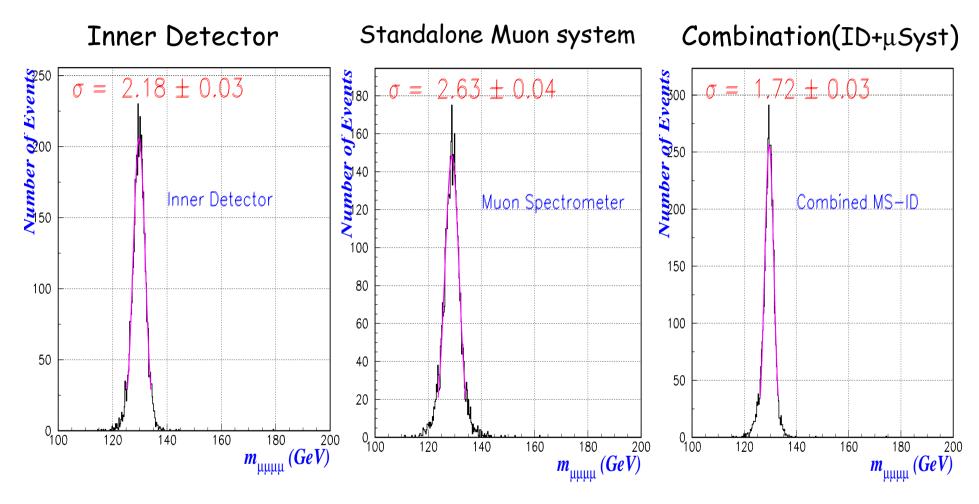

Traversing Atlas a  $\mu$  is detected in

ullet 2 high precision tracking systems: Inner Detector and  $\mu$  System



#### 1) Introduction: Single $\mu$ performance






- ✓ The Inner Detector (Muon System) measurements dominate the combined transverse momentum below (above) 50 GeV
- ✓ Muon System efficiency decreased by ~ 2 % at all pT w.r.t TDR
- ✓ New layout of  $\mu$ -spectrometer causes a ~9% efficiency loss in the H $\rightarrow$ 4  $\mu$  signal

# 2) Analysis: Higgs mass resolution

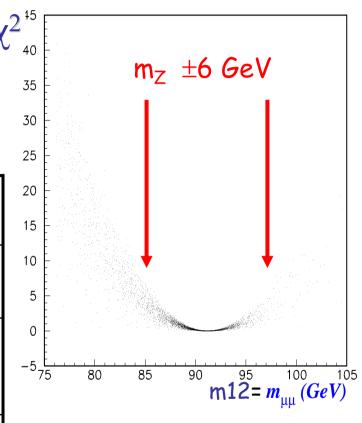
- The Higgs mass resolution is performed by using:
  - standalone Muon System
  - Inner Detector only
- To improve the mass measurement:
  - Combination of tracks in the inner detector and the Muon system, two strategies can be used:
    - STACO: Statistical combination of two independent measurements by means of their covariance matrices
    - MUID: fitting the global muon track using the hits from the two subdtectors which were found and used separately by the standalone reconstruction
  - Kinematic constraint of the Z mass : Minimization of a  $\chi^2$  (track parameters, covariance matrices Z mass and width). A 10 parameter fit

#### 2) Analysis: Higgs mass resolution m<sub>H</sub>=130GeV



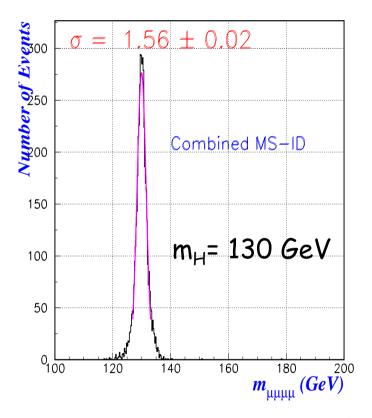
The combination improves the mass resolution by ~20-35% w.r.t  $ID/\mu Syst$  separately and reduces the non-Gaussian tails

DAPNIA / SPP-Saclay


Samira Hassani

## 2) Analyse: Z<sup>0</sup> mass constraint (m<sub>H</sub>=130GeV)

■ x2 minimization (input: track parameters, covariance matrices, constraints: Z mass and width.) A 10-parameter fit


 $\hfill \Box$  Only events with  $|m(\mu + \mu -) - mZ| < 6$  GeV are kept

| Resolution<br>σ (GeV)         | Before Z<br>constraint | After Z constraint | Gain<br>(%) |
|-------------------------------|------------------------|--------------------|-------------|
| Muon System<br>σ (GeV)        | 2.63 ± 0.04            | 2.11 ± 0.04        | 20%         |
| Inner<br>Detector<br>σ (GeV)  | 2.18 ± 0.03            | 1.71 ± 0.03        | 21%         |
| Combination ID + μSyst σ(GeV) | 1.72 ± 0.03            | 1.56 ± 0.02        | 10%         |



## 2) Analyse: Higgs mass resolution

Combination of tracks in the inner detector and the Muon system + Z mass constraint



| m <sub>H</sub> (GeV) | σ (GeV)     | σ (GeV) TDR |
|----------------------|-------------|-------------|
| 130                  | 1.56 ± 0.02 | 1.42 ± 0.06 |
| 150                  | 1.81 ± 0.01 | 1.62 ± 0.06 |
| 180                  | 2.22 ± 0.02 | 2.20 ± 0.06 |

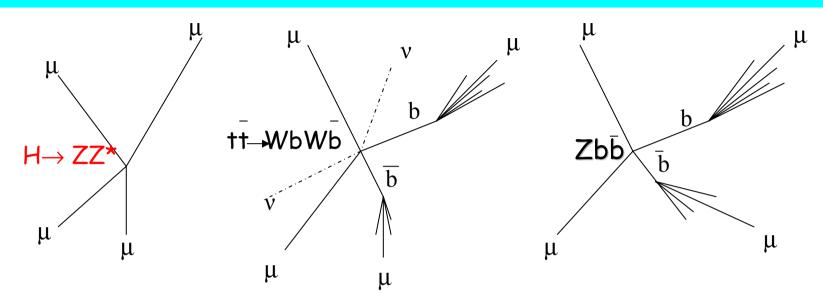
$$\frac{\sigma}{m_H} \approx 1.2$$
 %

Mass resolution worsen by ~ 10% wrt TDR
cracks in Muon System and
more realistic simulation of Inner Detector (material +field)

## 2) Analyse: Background rejection

 $\square$  Signal and backgrounds after kinematic cuts (integrated over a mass window of  $\pm$  5 GeV around m<sub>H</sub>=130 GeV)

| process                                                                      | σXBR(fb) |
|------------------------------------------------------------------------------|----------|
| Signal : H $\rightarrow$ 4 $\mu$ (m <sub>H</sub> =130 GeV)                   | 0.10     |
| Irreducible : (Z/ $\gamma$ *)(Z*/ $\gamma$ *) $ ightarrow$ 4 $\mu$           | 0.04     |
| Irreducible : (Z/ $\gamma$ *)(Z*/ $\gamma$ *) $\rightarrow$ 2 $\mu$ 2 $\tau$ | 0.01     |
| Reducible : (Z/γ*)bb                                                         | 0.40     |
| Reducible : tt                                                               | 0.27     |


#### 1) Rejection of reducible background

Aim: Bring the reducible bkg down to  $\sim 10\%$  of irreducible bkg (protection vs theoretical uncertainties)  $\Rightarrow$  Rejection  $\sim 100$  is needed

#### 2) Rejection of irreducible background

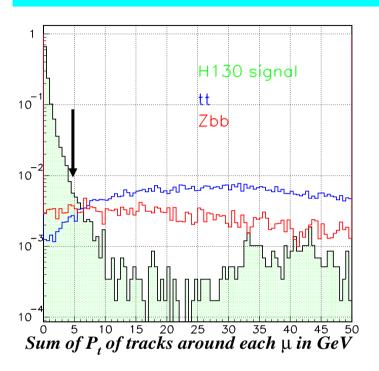
Use Likelihood function & Neural Network with discriminating variables based on Higgs properties

# 2) Analyse: Rejection of reducible background



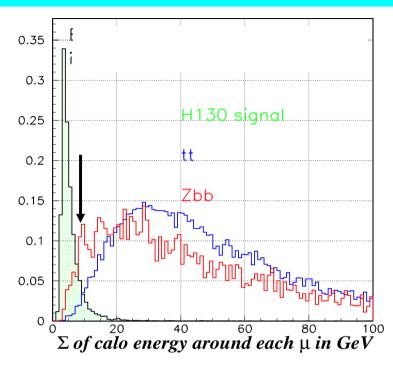
#### ■ Isolation Cuts

In Zbb and ttbar bkg, 2  $\mu$  out of 4 are produced in b quark decay. They are less isolated than direct  $\mu$ 


- > isolation in the Inner Detector
- > isolation in the Calorimeters

#### Vertexing Cuts

In Zbb and ttbar bkg, 2  $\mu$  originate from the displaced vertex

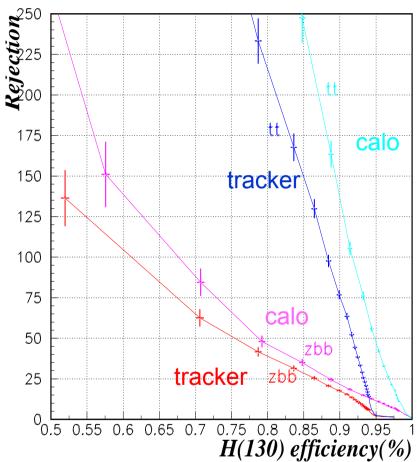

- > impact parameter
- > quality of common vertex fit

#### 2) Tracker and Calorimeter Isolation



*Variable*: Sum of the Pt of all tracks in the Inner Detector in a cone of  $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} = 0.2$  around each  $\mu$  condidate

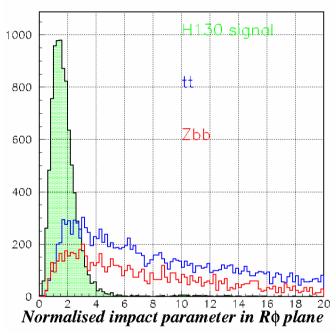
Cut < 5 GeV



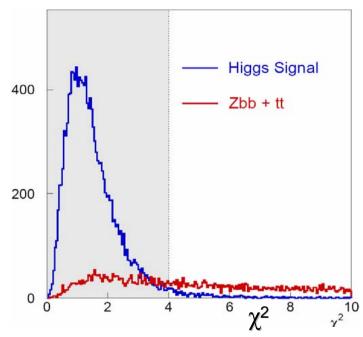

Variable: Sum of the transverse energy deposition in the calorimeters (EM + Tile +LarHEC) in cone  $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} = 0.3$  around each  $\mu$  candidate

Cut < 9 GeV

(pile-up and noise effects are not simulated)


#### 2) Calorimeter isolation versus Tracker isolation




| Isolation    | eff %<br>m <sub>H</sub> =130 | rejection<br>†† | rejection<br>Zbb |
|--------------|------------------------------|-----------------|------------------|
| Calorimeters |                              |                 |                  |
| Tracker      | 90 ±0.4                      | 98 ± 5          | 22 ± 2           |

- > The calorimeter criteria is more efficient than the tracker
- The isolation cuts are much less effective for Zbb events because of the softer pT spectrum of the b decay's products.

#### 2) Vertexing: Impact parameter & Common Vertex fit



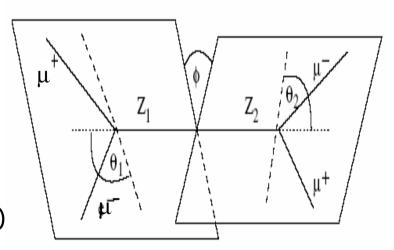
Variable: Largest of the normalized Impact Parameter of the  $\mu$  candidates Cut: Normalized IP < 3



Try to fit a common vertex with all the  $\mu$  Variable:  $\chi^2$  of the vertex fit Cut:  $\chi^2$  of fit< 4

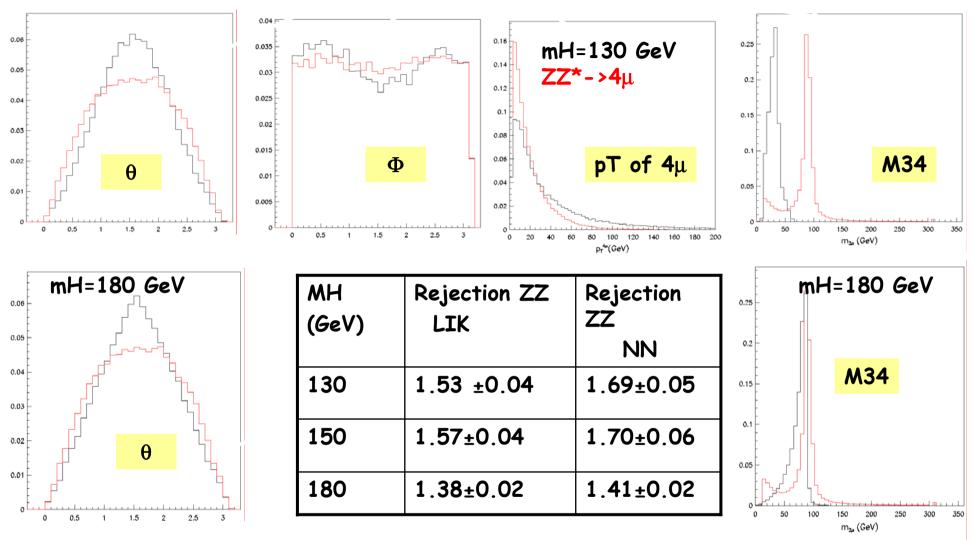
| Vertexing        | eff %<br>m <sub>H</sub> =130 | Rejection<br>tt | Rejection<br>Zbb |
|------------------|------------------------------|-----------------|------------------|
| Common Vertex    |                              | 5.3 ± 0.6       | 4.9 ± 0.6        |
| Impact Parameter | 90 ± 0.4                     | $3.2 \pm 0.6$   | 5.0 ± 1.2        |

The common vertex fit is more efficient than the impact parameter cut


#### 2) Combined rejection: Isolation + Vertexing

|                  | Variable                        | eff %<br>m <sub>H</sub> =130 | rejection<br>tt | rejection<br>Zbb |
|------------------|---------------------------------|------------------------------|-----------------|------------------|
| Current analysis | Calorimeter info + vertex fit   | 79 ± 0.5                     | 879 ± 102       | 121 ± 15         |
| TDR              | Tracker info + impact parameter | 81                           | 1200 ± 350      | 105 ± 50         |

- > The goal of 100 rejection of Zbb background is achieved
- $\succ$  The dominant reducible background after rejection is Zbb (softer  $p_T$  spectrum, hence isolation and vertexing are less efficient)
- > Likelihood and neural network with 6 variables give similar results
  - √the 2 largest normalized impact parameters(IP) in transverse plane of the 4 IP
  - $\checkmark$  the 2 largest pT reconstructed inside a cone of R=0.2 around the 4  $\mu$  tracks
  - $\checkmark$  the 2 largest total transverse energy depositions in calorimeters in a cone of R=0.2 around the  $4\mu$  tracks


# 2) Analyse: Rejection of irreductible background

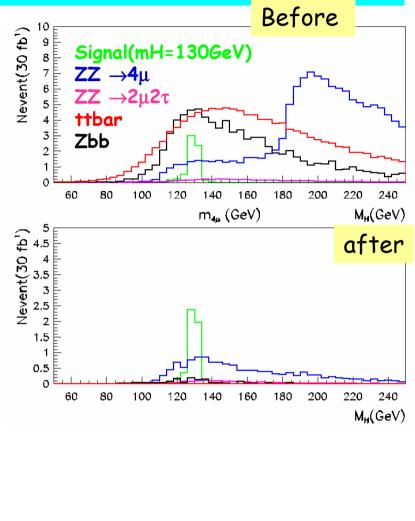
- □ Variables that help to reject irreducible  $ZZ^*->4\mu$  bkg are:
  - $\triangleright$  invariant masses (M12, M34),  $p_T$  of 4  $\mu$
  - angular distribution (if Higgs has Spin 0 and CP even)
- ☐ Likelihood function (and neural network) with 6 variables:
- Angle between the decay planes of the two
   Z in Higgs condidate rest frame
- Angle between μ- in Z rest frame and Z
  boost in Higgs rest frame (both for on-shell
  Z and off-shell Z)
  (see ATL-COM-PHYS-2003-001, Buszello et al.)



- $p_T$  of 4  $\mu$
- Invariant mass of the two  $\mu$ +  $\mu$  paires (M12 and M34)

#### 2) Analyse: Rejection of irreductible background




> At higher masses, angular distributions are more different between signal and bkg, but mass distributions are more similar

#### 3) Results for L=30 fb<sup>-1</sup>

Signal and background rates after overall analysis in mass window ±5 GeV around mH

| Signal (mH=130GeV)         |      |
|----------------------------|------|
| (eff=81.2%)                | 4.16 |
| $ZZ 	o 4 \mu$              | 1.36 |
| $ZZ 	o 2\mu 2\tau$         | 0.15 |
| Zbbar $ ightarrow$ 4 $\mu$ | 0.31 |
| ttbar $ ightarrow$ 4 $\mu$ | 0.01 |
| BK <i>G</i>                | 1.83 |

| Higgs Mass (GeV) | Significance<br>(Poisson) |
|------------------|---------------------------|
| 130              | 2.32                      |
| 150              | 5.12                      |
| 180              | 2.24                      |



By combining the channels  $H\to ZZ^*\to 4\mu$ ,  $H\to ZZ^*\to 4e$ ,  $H\to ZZ^*\to 2e2\mu$ , the Higgs signal can be observed with a better than  $5\sigma$  significance over most of the range  $130 < m_H < 180$  GeV for an integrated luminosity of 30 fb<sup>-1</sup>

# Summary

- This analysis aimed at the:
  - Validation of the reconstruction software within Athena framework with the Data Challenge 1 samples (~1M fully simulated events)
  - Performance of muon  $\mu$  detection
    - ~9% loss w.r.t TDR in  $H\rightarrow 4\mu$  efficiency due to the new Muon System layout
- Mass resolution worse than in TDR at level of 10% because of cracks in Muon System and more realistic simulation of Inner Detector (material +field)
- In spite of slight deterioration in expected performance, improved analysis techniques leads to results consistent with TDR results