Tommaso Lari Università and INFN Milano On Behalf of the ATLAS Collaboration

SUSY Measurements with ATLAS: Hadronic Signatures and Focus Point

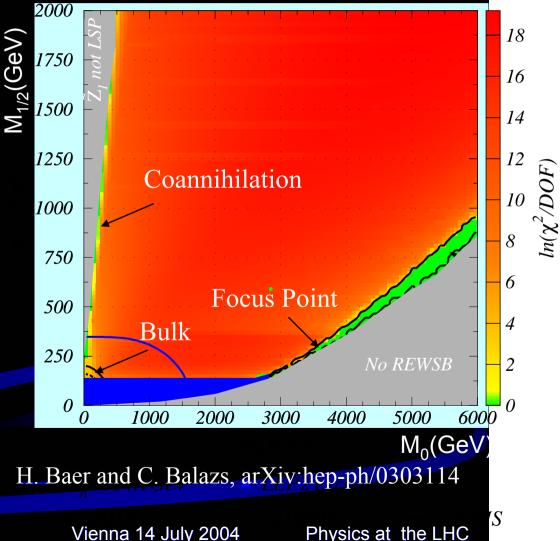
Outline

 Reconstruction of gluino, right-handed squarks and 3rd generation squarks for some low-mass mSUGRA benchmark points

• First study of gluino decays in the focus-point region

Bulk and Focus Point regions

Green: Regions of mSUGRA parameter space that give an acceptably low density of relic neutralinos

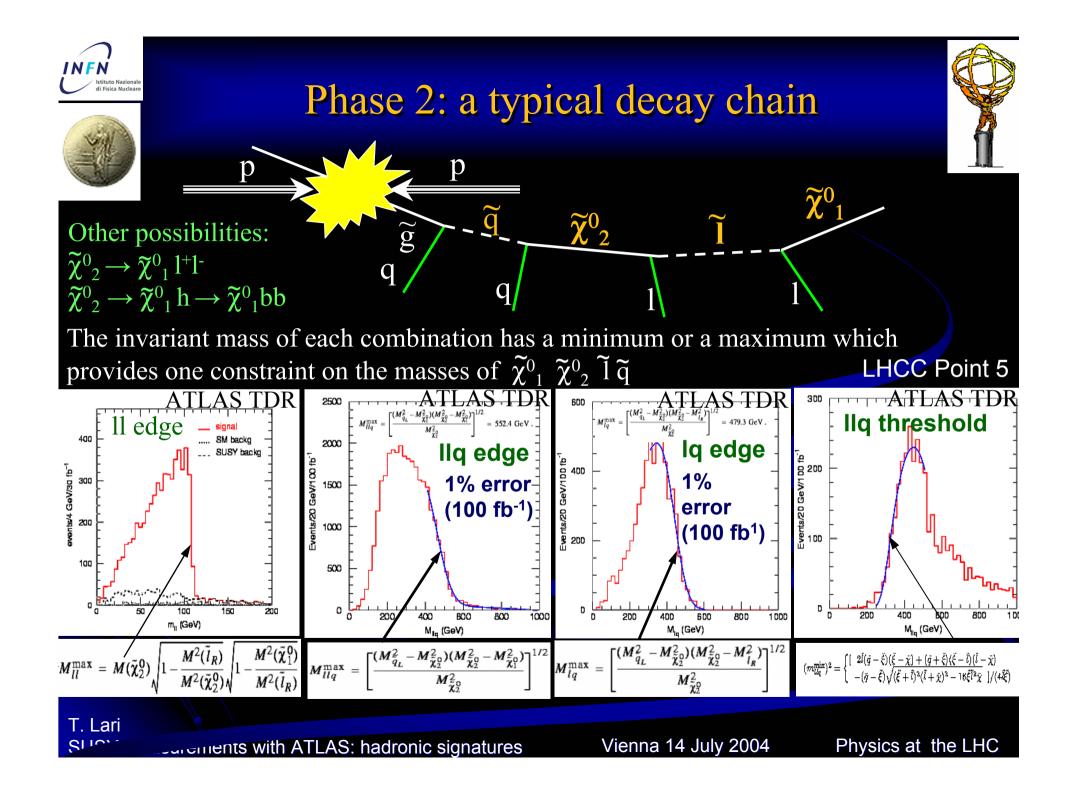

1st part of the talk

Bulk low-mass: Several well-studied benchmark points

2nd part of the talk

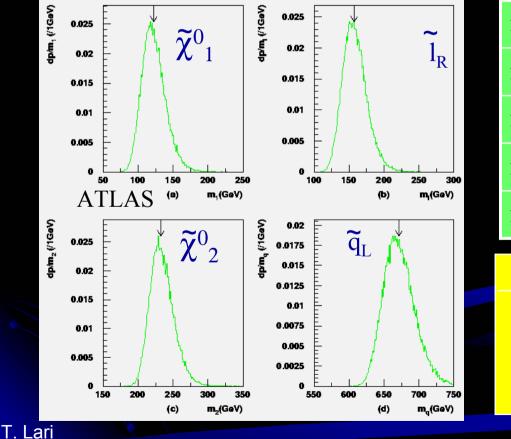
Focus Point: Studies started more recently.

 $\tan\beta = 10 A_0 = 0 \mu > 0 m_t = 175 \text{ GeV}$



Possible SUSY timeline

- Phase 1- Discovery: See excess of events with large missing energy, make sure they are from New Physics
- Phase 2 First SUSY masses: Reconstruction of leptonic decays, combine lepton with jets
 - G. Comune's talk
- Phase 3 More SUSY masses: Combine with b-jets and reconstructed tops. Purely hadronic final states.
 - This talk



SLIC

Model-independent masses

• Combine measurements from edges from different jet/lepton combinations to obtain 'model-independent' mass measurements.

masses (GeV)	LHCC5	SPS1a
$m(\tilde{\chi}^{0}_{1})$	122	96
$m(\tilde{l}_R)$	157	143
$m(\tilde{\chi}^0_2)$	233	177
$m(\mathbf{\tilde{q}}_L)$	687-690	537-543

Sparticle	Expected precision (100 fb ⁻¹)	
q̃∟	± 3%	
₹ ⁰ 2	± 6%	
Ĩ _R	± 9%	
$\widetilde{\chi}^{0}_{1}$	± 12%	

succents with ATLAS: hadronic signatures

Vienna 14 July 2004

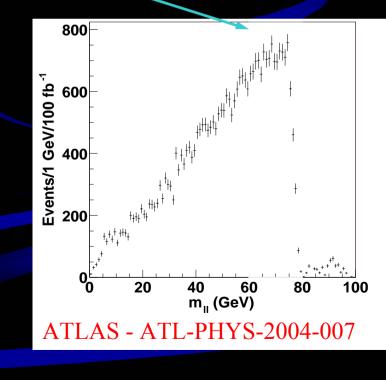
Physics at the LHC

Going up the decay chain

• Once the mass of the $\tilde{\chi}_{1}^{0}$ is known, it is possible to get the momentum of the $\tilde{\chi}_{2}^{0}$ using the approximate relation $p(\tilde{\chi}_{2}^{0}) = (1-m(\tilde{\chi}_{1}^{0})/m(11)) p_{11}$

valid for lepton pairs with invariant mass near the edge.

• The $\tilde{\chi}_{2}^{0}$ can be combined with b-jets to reconstruct the gluino mass peak:


$$\tilde{g} \rightarrow b\tilde{b} \rightarrow bb\tilde{\chi}_{2}^{0}$$

Example: SPS1a B.K.Gjelsten et al., ATL-PHYS-2004-007

 $M_{0} = 100 \text{ GeV}$ $M_{1/2} = 250 \text{ GeV}$ $Tan \beta = 10$ A = -100 GeV $\mu > 0$

T. Lari

 $M(\tilde{g}) = 611 \text{ GeV}$ $M(\tilde{b}_1) = 515 \text{ GeV}$ $M(\tilde{b}_2) = 539 \text{ GeV}$ $M(\tilde{\chi}_2^0) = 177 \text{ GeV}$

Gluino and sbottom reconstruction

tituto Nazi

di Eisica Nuclear

INFN

ATLAS - ATL-PHYS-2004-007

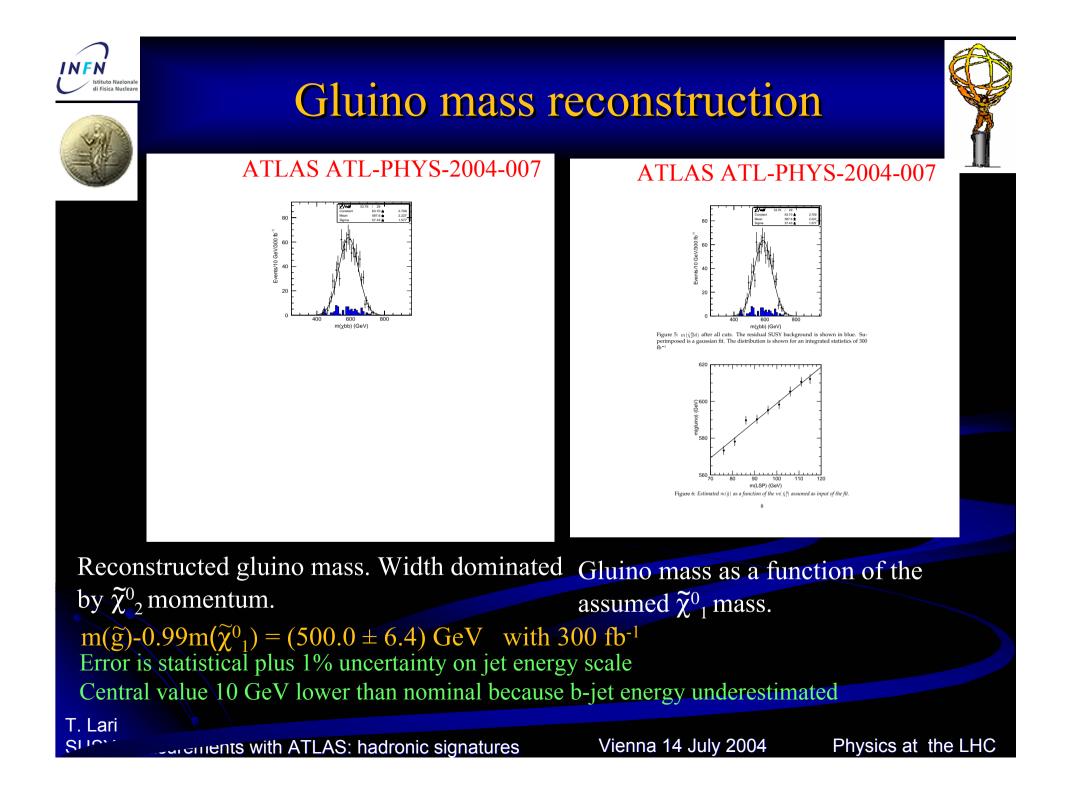
a reasonable statistics for the analysis. We plot in Fig 4 the flavour-subtracted distribution of $m(\tilde{\chi}_2^0 b)$ versus $m(\tilde{\chi}_2^0 bb)$, for both b jets, assuming the nominal values for $m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_2^0)$. Now well-separated regions appear in the plot, of which one corresponds to the

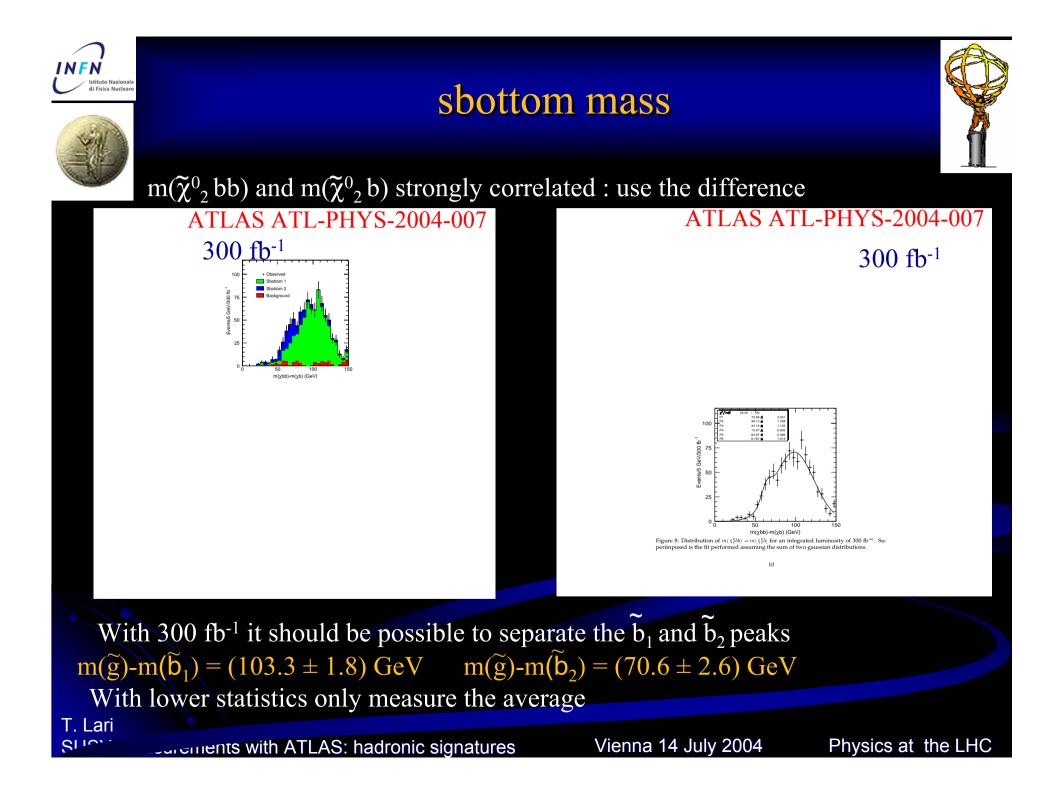
1000

Good combinations. $m(\tilde{g})$ and $m(\tilde{b})$ correlated (Dominant error from $\tilde{\chi}_{2}^{0}$ Momentum affects both)

Bad $\tilde{\chi}_{2}^{0}$ b combinations (b-jet is from gluino decay)

Figure 4: Distribution of $m(\bar{\chi}_2^0 b)$ versus $m(\bar{\chi}_2^0 bb)$ for events passing the selections.


correct $\bar{\chi}_{2}^{0}b$ pain for the reconstruction of the \bar{h} and shows a st ong correl ion between the \bar{q} and the \bar{l} ss. The second region corre ands to the nation in w hich $m(\bar{\chi}_2^0 b)$ is calculated taki he b-jet from the $\bar{g} \rightarrow b\bar{b}$ decay ne interestin region on the 2dimensional p v requiring $380 < m(\bar{\chi}_2^0 b)$ $d m(\bar{y}_{3}^{0}bb)$ $n(\bar{\chi}_{3}^{0}\bar{b}) > 150 \text{ GeV}$ ed by OS-SF the lepton The main residual background consists where the case pair originates from a squark of the first four general the leading b is part of ascade. We suppress this background by the invariant mass of the $\bar{\chi}_2^0$ with the ding jet not tagged as b is or ide of the int al 400 GeV to 600 GeV. The $m(\bar{\chi}_{2}^{0}bb)$ after these cut vn in Fig. olue is the residual perimposed background. The width of the distribution i ed by the \bar{v} omentum mismeasurement. The statistical uncertainty on the peak V for 100 fb⁻¹ and ion is $\sim 2.5 \text{ GeV}$ for 300 fb⁻¹, and the central value is $\sim 10 \text{ G}$ in the nominal \bar{a} mass The displacement of the fit value from the nominal value is related to an underestimate of the energy of part of the b jets.


For this analysis we assume that both $\bar{\chi}_1^0$ and $\bar{\chi}_2^0$ would be measured with the technique described in the previous section. As already discussed above, this results in a strong correlation between the measured $\bar{\chi}_1^0$ and $\bar{\chi}_2^0$ masses which can be parametrized as:

$m(\bar{\chi}^0_2) = 82.85 + 0.977 \times m(\bar{\chi}^0_1)$

Therefore, to evaluate the dependence of the measured gluino mass on the assumed $\tilde{\chi}_2^0$ masses, we varied only the $\tilde{\chi}_1^0$ mass between 76 and 116 GeV, and the $\tilde{\chi}_2^0$ mass

T. Lari

Right-handed squark

 \tilde{q}_{R} does not couple to Wino $\tilde{\chi}_{1}^{0}$ is nearly a Bino $\tilde{\chi}_{2}^{0}$ is nearly a Wino

$$\widetilde{q}_R \! \rightarrow q \; \widetilde{\chi}^0$$

Combine the transverse momentum of two leading jets with missing transverse momentum as follows:

Maximum of this variable is $m(\tilde{q}_R)-m(\tilde{\chi}_1^0)$ $m(\tilde{q}_R)-m(\tilde{\chi}_1^0) = (424.2 \pm 10.9) \text{ GeV}$

Note: can reconstruct $\tilde{l}_L \rightarrow 1 \tilde{\chi}_1^0$ with same technique $m(\tilde{l}_L)-m(\tilde{\chi}_1^0) = (106.1 \pm 1.6) \text{ GeV}$

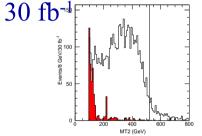


Figure 14: Distribution of M_{T2} for the events passing the cuts. In red is shown the Standard Model background. The integrated statistics in the plot is 30 fb⁻¹.

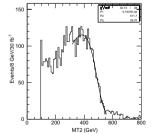
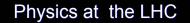
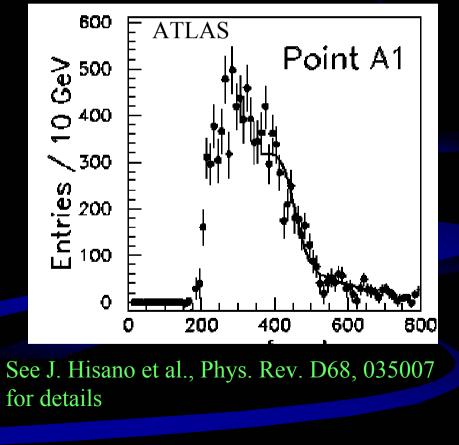



Figure 15: Distribution of M_{T2} for events passing the cuts. Superimposed is the fit described in the text.

19


Purely hadronic final states

Aim is to reconstruct $\widetilde{g} \to t\widetilde{t}_1 \to tb\widetilde{\chi}_1^{\pm}$ or $\widetilde{g} \to b\widetilde{b} \to bt \widetilde{\chi}_1^{\pm}$

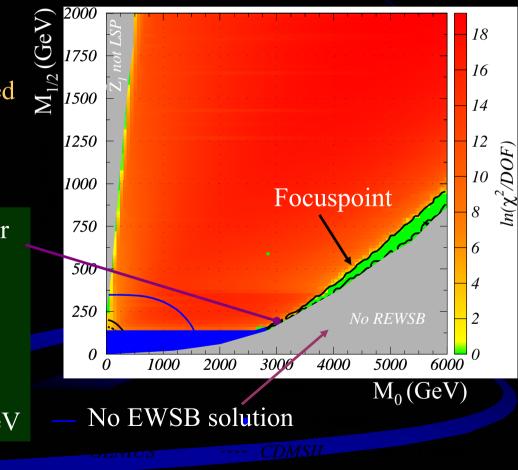
tb invariant mass has a maximum function of the masses of \tilde{g} , $\tilde{b}(or \tilde{t})$ and $\tilde{\chi}_{1}^{\pm}$ Two closely spaced edges from the two decays: can measure a weighed average.

Selections: total jet energy and missing energy 2 b-jets lepton veto 4 to 6 non-b jets Reconstruction: m(jj) close to m(W) m(jjb) close to m(t) W-sidebands to estimate and subtract combinatorial background

Physics at the LHC

Focus Point region

Large scalar mass: heavy squarks and sleptons.


Relatively low gaugino mass.

Low μ , large Higgsino/Bino mixing \Rightarrow low density of relic neutralinos,

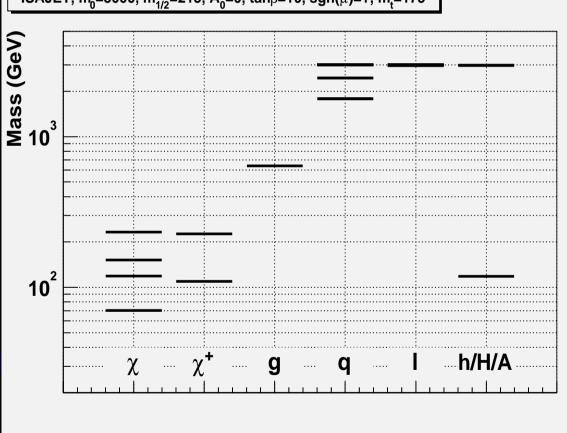
compatible with WMAP limits.

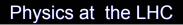
The FP region has an high neutralinonucleon cross section, so it will be probed by direct searches for dark matter.

Problems:	Selected point for
• Very sensitive to	detailed study
top mass	$m_0 = 3000 \text{ GeV}$
• Large	$M_{1/2} = 215 \text{ GeV}$
discrepancies	Tan $\beta = 10$
between SUSY mass	$A_0 = 0 - \mu > 0$
calculators	M(top) = 175 GeV

Physics at the LHC

T. Lari


Mass spectrum

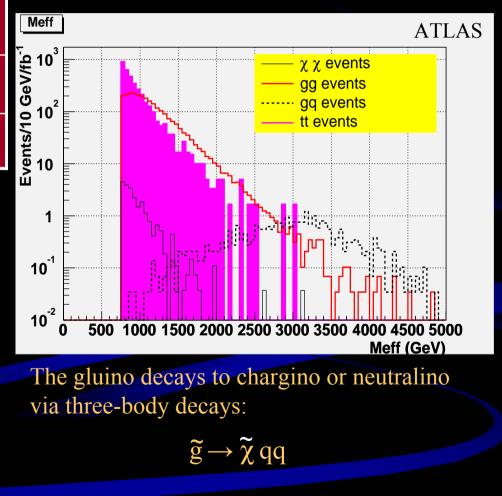

ISAJET 7.69

ISAJET, m_0 =3000, $m_{1/2}$ =215, A_0 =0, $tan\beta$ =10, $sgn(\mu)$ =+, m_t =175

- Heavy squarks and leptons.
- Heavy Higgs (except h)
- Lighter gluino (640 GeV) decays into charginos and neutralinos

T. Lari

Production x-Section

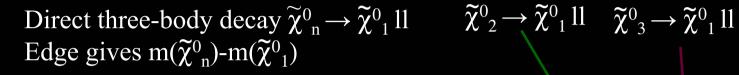

$\widetilde{\chi}\widetilde{\chi}$	13.3 pb
ğğ	3.76 pb
q̃ĝ	0.023 pb

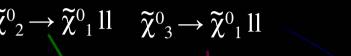
• Neutralino/chargino production abundant but without jet/missing energy signature (mass similar or lower than top mass).

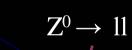
• Gluino pair production followed by decay into chargino/neutralino is dominant after cuts to reject SM • squarks still visible with

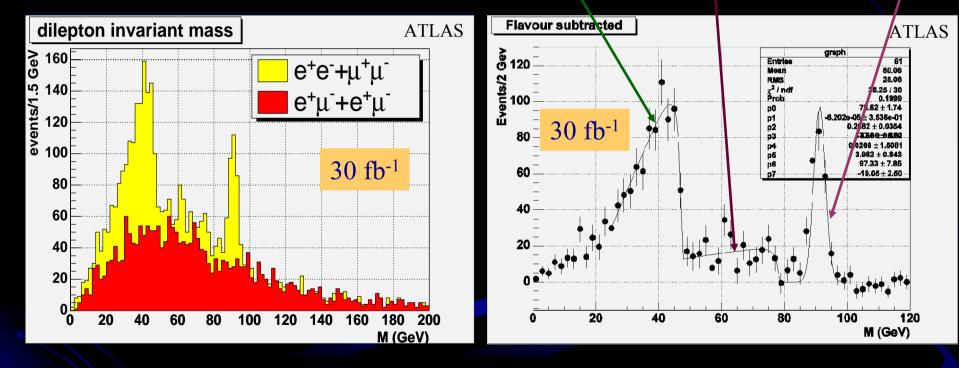
enough luminosity

 $M_{eff} = Jet energy + E_T^{miss}$


Vienna 14 July 2004


Physics at the LHC

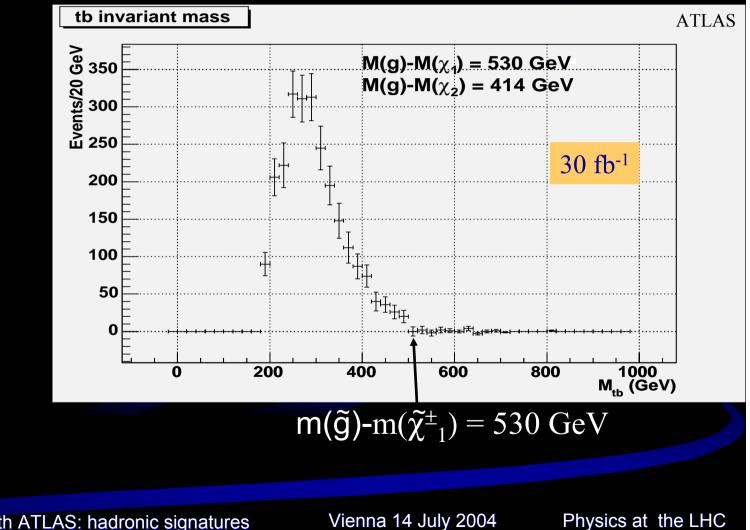



Dilepton analysis

Combination with jets to reconstruct the gluino mass is under study.

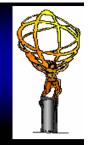
T. Lari SLIC

Vienna 14 July 2004


Physics at the LHC

Gluino to chargino decay

Direct three-body decay: $\tilde{g} \rightarrow \tilde{\chi}^{\pm}$ tb



T. Lari SLIC

Conclusions

- After the mass of the LSP has been measured with kinematic edges, the mass peaks of heavier particles can be reconstructed.
- A detailed analysis has been performed for point SPS1a: a large number of SUSY masses can be measured with a precision of 5 to 12 GeV with a statistics of 300 fb⁻¹.
- The same reconstruction techniques can be used for other regions of parameter space.
- Most studies done with fast simulation (parameterized detector response) so far. Analysis with detailed detector simulation has been started.
- New regions of parameter space, guided by relic density constraints, are also an hot topic. A detailed characterization of the selected point in the focus point region is being made.