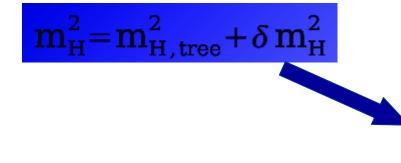


13-17 July 2004 . Vienna . Austria


Radion searches in CMS

Simone Gennai, SNS Pisa On Behalf of the CMS Collaboration

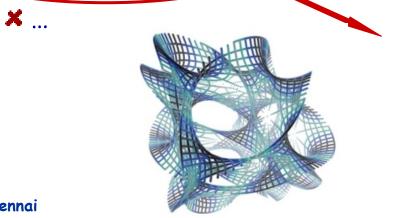
1 loop corrections to the Higgs mass in the SM lead to the following result:

$$\delta \mathbf{m}_{\rm H}^2 = 3 \frac{G_{\rm F}}{4\sqrt{2}\pi^2} \left(2 \,{\rm m}_{\rm W}^2 + {\rm m}_{\rm Z}^2 + {\rm m}_{\rm H}^2 - 4 \,{\rm m}_{\rm t}^2 \right) \Lambda_{\rm SM}^2$$
$$= - \left(115 \,{\rm GeV} \right)^2 \left(\frac{\Lambda_{\rm SM}}{400 \,\,{\rm GeV}} \right)^2$$

To avoid fine tuning we need: $\Lambda_{SM} \ll M_{GUT}, M_{Pl}$

Which represents the so called: hierarchy problem

How to solve the problem? We have to introduce new physics:


XIt must NOT affect too much EWPM

*The new physics must cut off the Higgs mass corrections at order of $(100 \text{ GeV})^2$

*****Few ingredients:

SUSY (suppress quadratic divergence in favor of logarithmic divergence)

***Extradimensions** (however needed in string theory)

Can lead to unify EW to Gravity, thanks to the geometry of the extradimensions 3

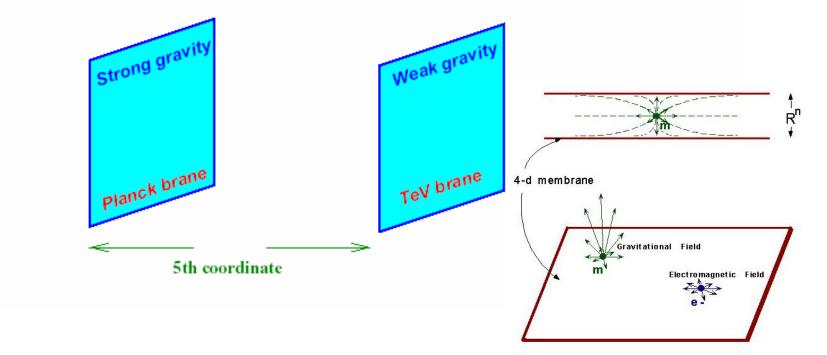
Extra Dimensions, a brief overview

- The model are classified wrt the geometry of the ED:
 Flat compactified ED (i.e. Flat metric and finite size)
 Warped ED (warp factor)
- Moreover models can differ on which particles can access the ED:

Gravitational ED (only gravity can access the ED)

X Universal ED (also SM particle can access the ED)

We are interested in this first type.


In particular in the Randall Sundrum Model

Simone Gennai

How can ED explain the hierarchy problem?

We generally assume that we live on a brane, but it may not be the brane on which gravity is concentrated. Suppose that gravity is highly concentrated near what I'll call the Planck brane. So gravity is concentrated on one brane, the Planck brane, and we live on a second brane, not precisely on top of the first brane but a little apart. Gravity on our second brane would appear to be weak. And that's precisely what we wanted to explain: why gravity appears to be so weak. That's the hierarchy problem-why gravity is so weak. (Lisa Randall)

The hierarchy problem is solved due to the warp factor in the metric:

$$ds^2 = e^{-2\sigma(y)}\eta_{\mu
u}dx^\mu dx^
u - dy^2$$
 $\sigma(y) = egin{array}{c} \mathsf{k} & |y| \end{array}$

Considering the universal scale 5D at ~ $M_{\rm pl,}$ on the scale of EWSB on the EW brane is:

$$\Lambda \equiv \overline{M}_{Pl} e^{-kR_c\pi}$$

 $(kR_{c} \sim 10)$

Phenomenology of the ED

Assuming, for example, 1 compactified ED (with radius R) it is simple to show that particle field can be expanded in series, generating the Kaluza-Klein resonances ...

A scalar field can be expanded in Fourier series in the 5th dimension

$$\Phi(x^{\mu}, y) = \sum_{n \in \mathbb{Z}} e^{in\frac{y}{R}} \phi_n(x^{\mu})$$

With a kinetic part in the Lagrangian

$$\int d^4x \, dy \left(\partial_M \Phi^* \; \partial^M \Phi\right) = \int d^4x \, dy \left(\partial_\mu \Phi^* \; \partial^\mu \Phi + \partial_5 \Phi^* \; \partial^5 \Phi\right) =$$
$$= \int d^4x \sum_{n \in \mathbb{Z}} \left(\partial_\mu \phi_n^* \; \partial^\mu \phi_n \left(-\frac{n^2}{R^2} \phi_n^* \phi_n\right)\right)$$
Mass term of order 1/R

What is the radion?

Assuming the RS model and representing the 5D graviton field in our 4D world, we obtain spin-2, spin-1 and scalar representation of the graviton.

$$h_{\mu\nu}(x,y) = \sum_{n=0}^{\infty} h_{\mu\nu}^{n}(x)C^{n}(y) \ (spin - 2)$$

$$A_{\mu i}(x,y) = \sum_{n=0}^{\infty} A_{\mu i}^{n}(x)C^{n}(y) \ (spin - 1)$$

$$\phi_{ij}(x,y) = \sum_{n=0}^{\infty} \phi_{ij}^{n}(x)C^{n}(y) \ (spin - 0)$$

Here is the radion!

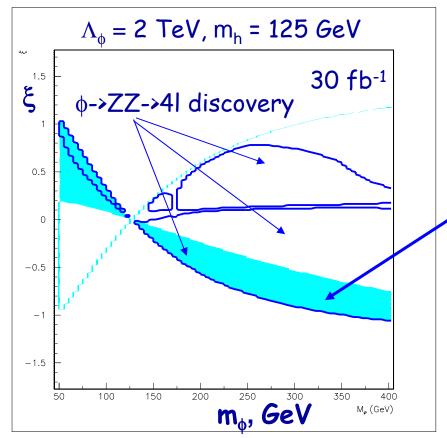
Cⁿ(y) are the corresponding coefficients of the Fourier expansion in the warped fifth dimension

The parameters of the model

9

$$\xi \quad \Lambda_{\phi} \quad m_{h} \quad m_{\phi}$$

Additional parameter for fixing the phenomenology of KK excitations of the gravitons $h^n_{\mu\nu}$,


$$m_1 = x_1 rac{m_0}{M_{Pl}} rac{\Lambda_{\phi}}{\sqrt{6}}$$

 m_1 is the mass of the first KK graviton excitation. $x_1 \sim 3.83$ is the first zero of the Bessel function J_1 .

The effect of the mixing

The Higgs boson couplings can change and thus for some regions in the parameters space the mixing may prevent the 5 sigma discovery of the Higgs boson (blue region below).

h->γγ is lost but φ->ZZ->4l can be seen

no discovery for h->2 γ σ Br(h_{SM}->ZZ->4I) ~= σ Br(ϕ ->ZZ->4I)

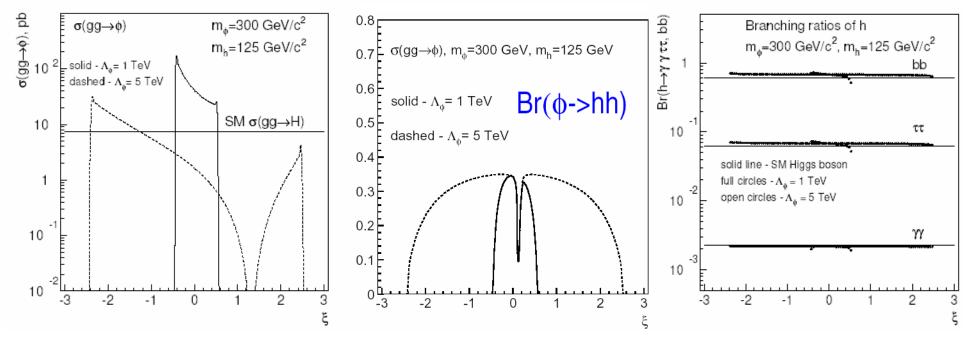
Observation of X->hh with 30 fb⁻¹ is a hint for radion !

Simone Gennai

Final states used in the analysis

ATLAS did fast simulation study on ³⁰⁰ ق د $\phi \rightarrow hh (2\gamma 2b, 2\tau 2b)$ G. Azuelos et al. 2002 we take the same mass points: $m_{\phi} = 300 \text{ GeV}, m_{h} = 125 \text{ GeV}$ 200 to start with . . . A. Nikitenko & G. Dewhirst (IC, London) 150 $\phi \rightarrow hh \rightarrow 2\gamma 2b$ S. Gennai (Pisa) 100 $\phi \rightarrow hh \rightarrow 2\tau 2b$ 50 L. Fano (Perugia)

J. Gunion et al. 2002 Allowed Regions and LEP/LEP2 Constraints allowed allowed excluded by LEP/LEP2 data -3 2 3 ٥ ξ


11

In this scenario, it is interested to study the final state where the radion decays in a couple of Higgs bosons.

We have fixed M_R = 300 GeV and M_h = 125 GeV and we made a scan over (ξ , Λ_{ϕ}) plane.

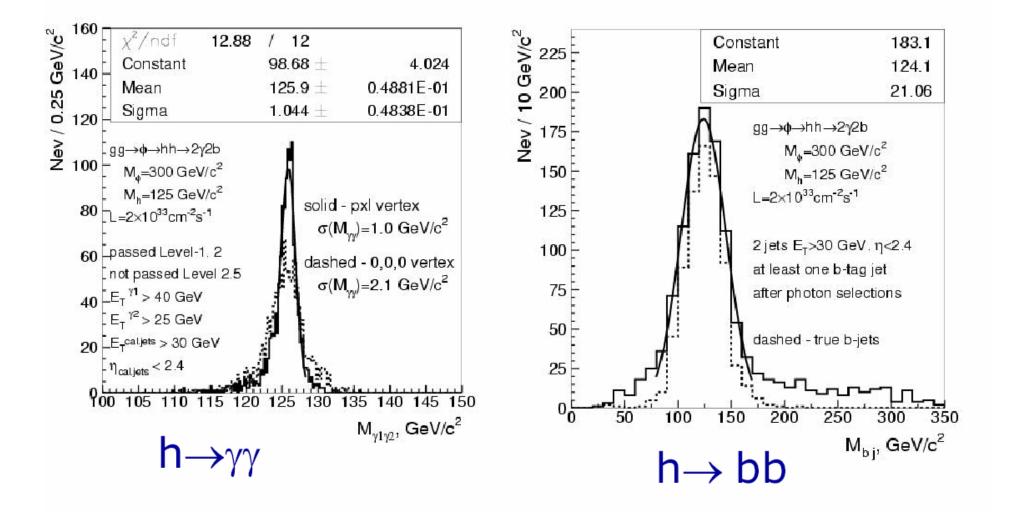
$$\sigma(gg \to \phi) = \sigma_{SM}(gg \to h) \frac{\Gamma(\phi) \cdot BR(\phi \to gg)}{\Gamma_{SM}(h) \cdot BR_{SM}(h \to gg)}$$

 M_{ϕ} =300 GeV, M_{h} =125 GeV

 Λ =1 TeV, ξ =-1/3

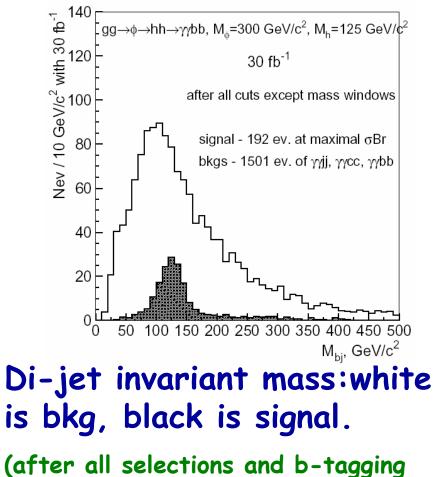
Main background: •Irreducible: γγ+jj, γγ+cc, γγ+bb •Reducible:γ+jjj, jjjj at LO

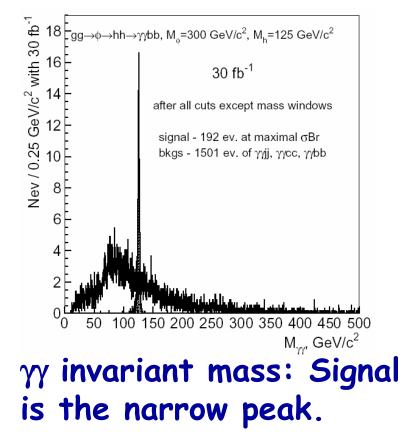
- -> $\sigma x BR \sim 100 \ fb$ Selection strategy:
 - ·L1 Trigger: double electrons/photons E_{T} >12 GEV
 - •HLT : double isolated photons E_T >14.5 GeV, pixel matching cut


•Off-line:

- •2 isolated (calo+tracker) photons $E_{T}^{\gamma 1, \gamma 2}$ >40, 25 GeV
- Tagging at least 1 b jet
- Invariant mass reconstruction

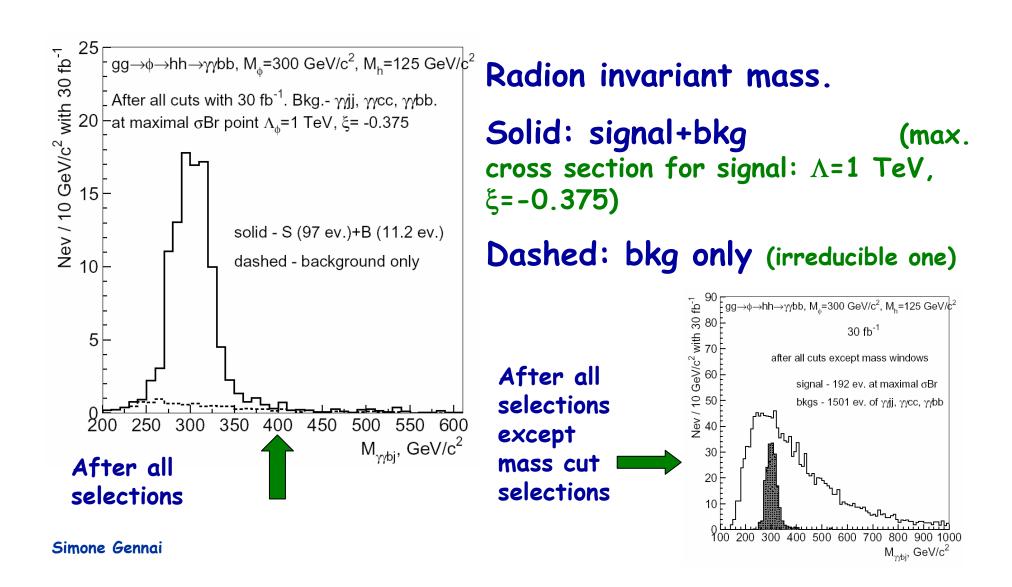
B j and $\gamma\gamma$ Signal invariant mass


2 jets (iterative cone algorithm, $\Delta R=0.5$) with E_T>30 GeV, $|\eta|<2.4$, R_Y-j>0.5 At least 1 jet b-tagged (>=2 tracks with $\sigma_{IP2D}>3$)



B j and $\gamma\gamma$ invariant mass

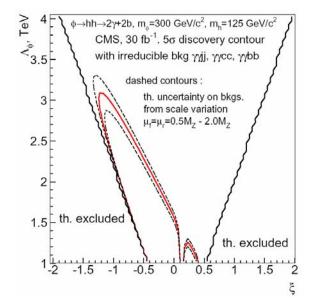
At least 1 jet tagged as b jet. Correction of the γ direction using the signal vertex

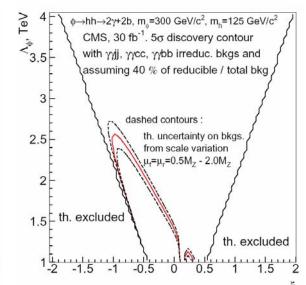

but before mass windows cut)

(after all selections and b-tagging but before mass windows cut)

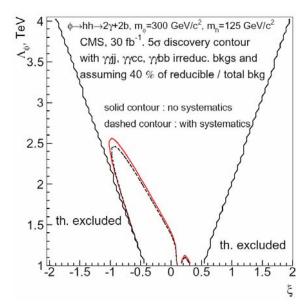
Radion mass distribution

Effect of the bkg scale variation


$\begin{bmatrix} gg \rightarrow \phi \rightarrow hh \rightarrow \gamma \gamma bb, M_{\phi} = 300 \text{ GeV/c}^2, M_{h} = 125 \text{ GeV/c}^2 \\ After all cuts with 30 fb^{-1}. Bkg \gamma \gamma jj, \gamma \gamma cc, \gamma \gamma bb. \\ Signal at point \Lambda_{\phi} = 1 \text{ TeV}, \xi = 0.425 \\ Significance 5 \text{ for } 250 < M_{\gamma \prime bj} < 350 \text{ GeV/c}^2 \\ & (S = 17 \text{ eV.}, B = 6.9 \text{ eV.}) \\ & 0 \\ &$	Radion invaria point , after a Table 5: Trigger and off-line selection	ll selecti	ons
$\overbrace{\substack{0}{2}}^{\circ}$ 3 $[$ 1 1 1 1 1 1 1 1 1 1	selection criteria	relative efficiency	absolute efficiency
$\sum S_{F}$ T thick solid - S(18 ev.)+B(11.2 ev.)	1. Level-1	0.738	0.738
thick solid - S(18 eV.)+B(11.2 eV.)	2. Level-2	0.927	0.685
	3. Level-2.5 photon stream	0.996	0.683
unin solid lines -	4. $E_T^{\gamma_{1,2}} > 40, 25 \text{ GeV}$	0.871	0.595
bkg. theor. uncertaity	5. tracker isolation of photons	0.682	0.406
L due to scale variation	6. ECAL isolation of photons	0.909	0.369
$1 \vdash \mu_f = \mu_r = 0.5 M_z - 2 M_z$	7. two jets of $E_T > 30$ GeV, $ \eta < 2.4$	0.341	0.126
	8. at least one b jet	0.610	0.077
	9. $M_{\gamma\gamma}$ mass window of 4 GeV/ c^2	0.779	0.060
200 250 300 350 400 450 500 550 600	10. M_{bj} window 60 GeV/ c^2	0.649	0.039
Μ _{γνbi} , GeV/c ²	11. $M_{\gamma\gamma bj}$ window 100 GeV/ c^2	0.950	0.037


	$\gamma\gamma { m jj}$	$\gamma\gamma c\overline{c}$	$\gamma\gamma { m b}ar{ m b}$
selections		efficiency	
1. $E_{T}^{\gamma_{1,2}} > 40,25$ GeV, $ \eta < 2.5$	0.446	0.466	0.487
2. tracker isolation in cone 0.3	0.328	0.345	0.379
3. two jets $E_{\rm T}$ > 30 GeV, $ \eta $ <2.4	0.127	0.125	0.133
4. at least one b jet	2.97×10^{-3}	1.76×10^{-2}	9.49×10^{-2}
5. $M_{\gamma\gamma}$ window 4 GeV/ c^2	6.50×10^{-5}	3.68×10^{-4}	2.92×10^{-3}
6. M_{bj} window 60 GeV/ c^2	2.01×10^{-5}	1.34×10^{-4}	1.02×10^{-3}
7. $M_{\gamma\gamma bj}$ window 100 GeV/ c^2	1.05×10^{-5}	8.57×10^{-5}	8.77×10^{-4}
N events after all selections	4.2 ± 0.8	2.0 ± 0.6	2.0 ± 0.6

| Signal and – background efficiency



Irreducible bkg only + theoretical uncertainties (scale variation of bkg cross section) Irreducible bkg + reducible bkg (40% of total bkg)*+theoretical uncertainties (scale variation)

Irreducible bkg + reducible bkg (40% of total bkg) + systematics effects on bkg

(*Red. bkg has been assumed from PRELIMINARY inclusive h->γγ Simone Gennai studies by S. Shevchenko)

 ϕ ->hh-> $\tau\tau bb$ ->l τ_{jet} n bb

In this analysis we suppose to know the Higgs boson mass value. The Higgs boson discovery can be performed through the ϕ ->hh-> $\gamma\gamma$ bb channel

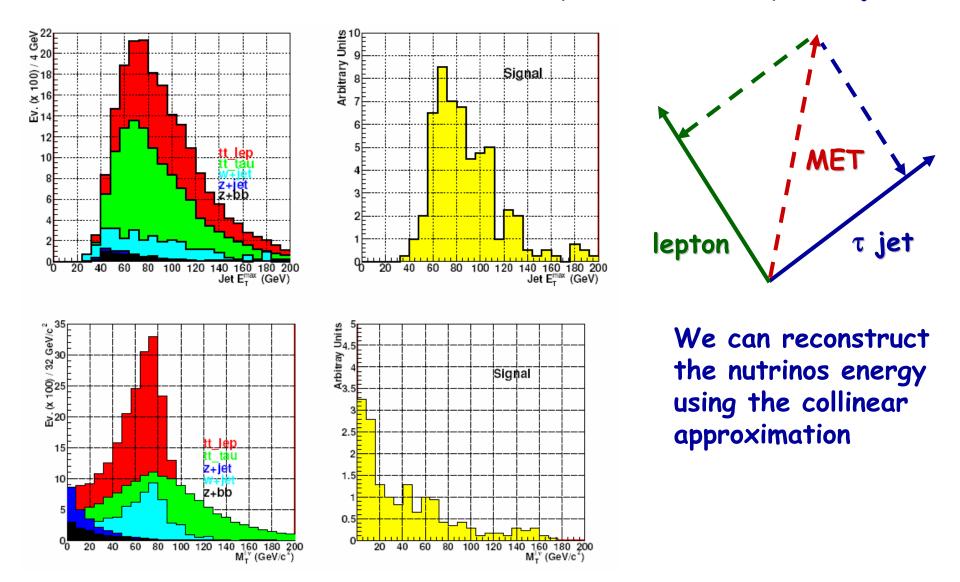
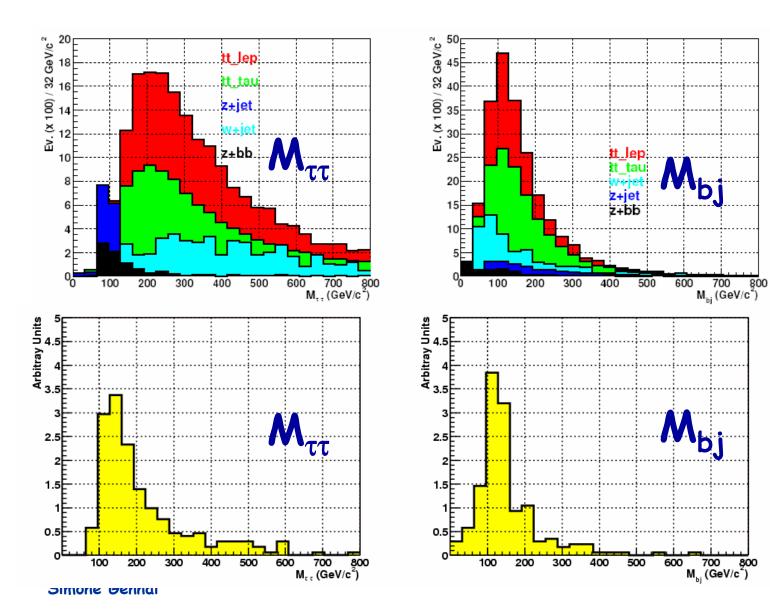

bkg Samples	σ (pb)	$\sigma \times BR$ (pb)	N. of events
$t\overline{t} \rightarrow Wb + W\overline{b} \rightarrow l + \nu + jets + b\overline{b} (tt_{had})$	825	245	7.3×10^{6}
$t\overline{t} \rightarrow Wb + W\overline{b} \rightarrow l + \nu + \tau jet + b\overline{b} (tt_{tau})$	825	27	8×10^{5}
$Zb\overline{b} \rightarrow \tau\tau + b\overline{b} \rightarrow l + \nu + \tau jet + b\overline{b}$	525	8	2.4×10^5
$Z + jets \rightarrow \tau \tau + jets \rightarrow l + \nu + \tau jet + jets \ (\hat{p_T} > 20)$	23300	355	10.6×10^{6}
$W + jets \rightarrow l + \nu + jets \ (\hat{p_T} > 80)$	4100	900	27×10^6

Table 5.3: Cross section (NLO), branching ratios and expected number of events, after 30 fb^{-1} , for the main background samples. See text for more details.


Kinematic distributions

We require to tag at least 1 b jet (p_T jet > 30 GeV). Selection on the transverse invariant mass of lepton+MET and Max pT of b jet

Invariant mass distributions

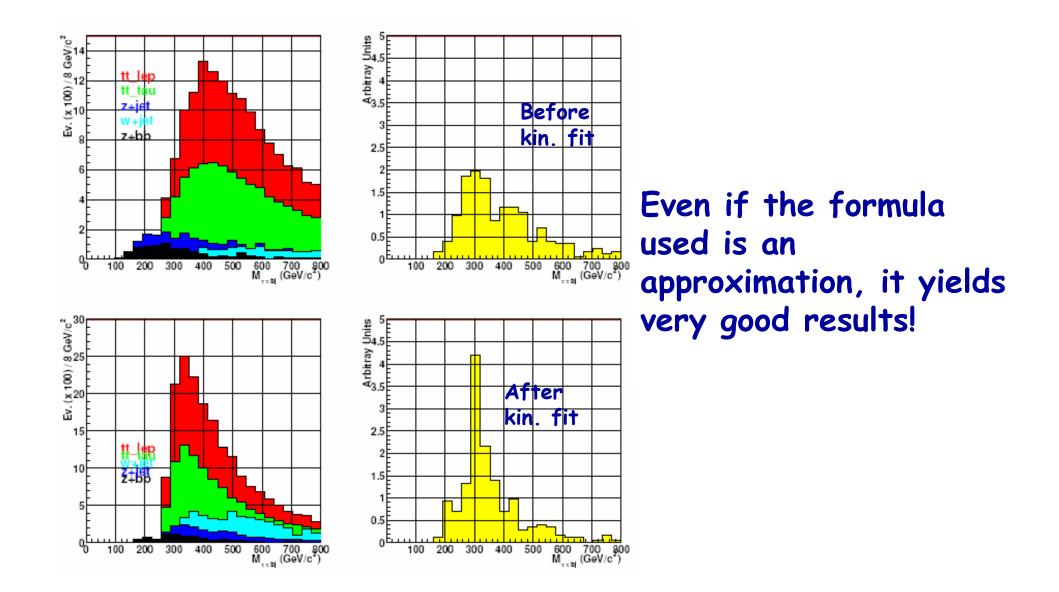
- We can select directly in invariant mass of b and tau jets:
 - 100 < Mbj <150 GeV
 - 100 < Μττ < 160 GeV
- Then apply the kinematic fit in order to rescale the jet energies, no changes in the angle between jets
- Fit the radion invariant mass distribution of signal+background

Kinematic fit, the implementation

The idea is to minimize a Chi-square form:

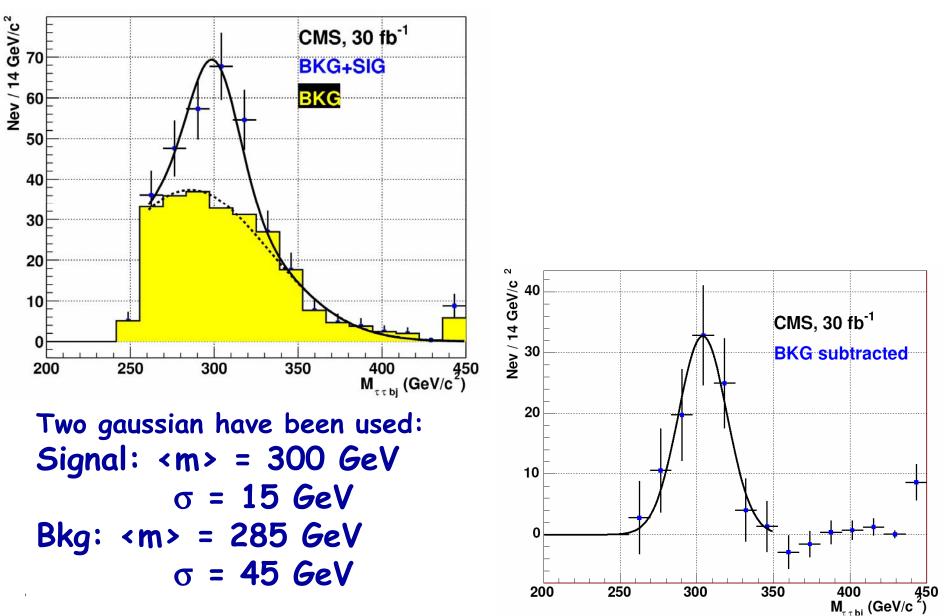
$$\chi^2 = \left(\frac{E_1 - \omega_1}{\sigma_1}\right)^2 + \left(\frac{E_2 - \omega_2}{\sigma_2}\right)^2 + \lambda \left(m^2 - 2E_1 E_2 (1 - \cos\theta)\right)$$

Where:


 $\label{eq:mass} \begin{array}{l} \textbf{m} = \textbf{true mass} \\ \mu = \textbf{reconstructed mass} \\ \textbf{E}_{1,2} = \textbf{rescaled energies} \\ \boldsymbol{\omega}_{1,2} = \textbf{measured energy} \\ \lambda = \textbf{Lagrangian multiplier} \\ \textbf{For what concerns } \tau, \ \textbf{the energies} \\ \textbf{after the neutrino reconstructions} \\ \textbf{have been used}. \end{array}$

After some algebra and some assumption on the jet energy resolution we get an approximated formula for the rescaled energies.

$$E_1 = \omega_1 + \left(\frac{m^2 - \mu^2}{\mu^2}\right) \times \frac{\omega_1 \omega_2}{\omega_1 + \omega_2},$$
$$E_2 = \omega_2 + \left(\frac{m^2 - \mu^2}{\mu^2}\right) \times \frac{\omega_1 \omega_2}{\omega_1 + \omega_2}$$



Effect of the kinematic fit

Fitting signal+background

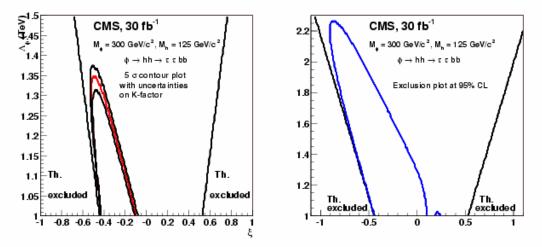


Figure 5.15: 5 σ discovery contour considering the k_{min} and k_{max}-factor, only statistical uncertainties have been considered (upper plot). 95% CL exclusion plot. No NLO uncertainties have been considered in the plot.

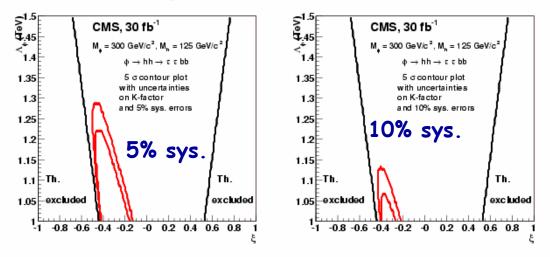


Figure 5.17: 5 σ discovery contour considering the k_{min} and k_{max}-factor and systematical uncertainties of 5% (left plot) and 10% (right plot) on background.

$$\sigma_{gg-
aightarrow \phi} \sim 100~{
m pb}$$

```
BR($->hh) ~ 0.24 BR(h->bb) ~ 0.6
```

```
\sigma_{gg\text{-+}\phi} \times BR \sim 10 \text{ pb}
```

Non-resonant background:

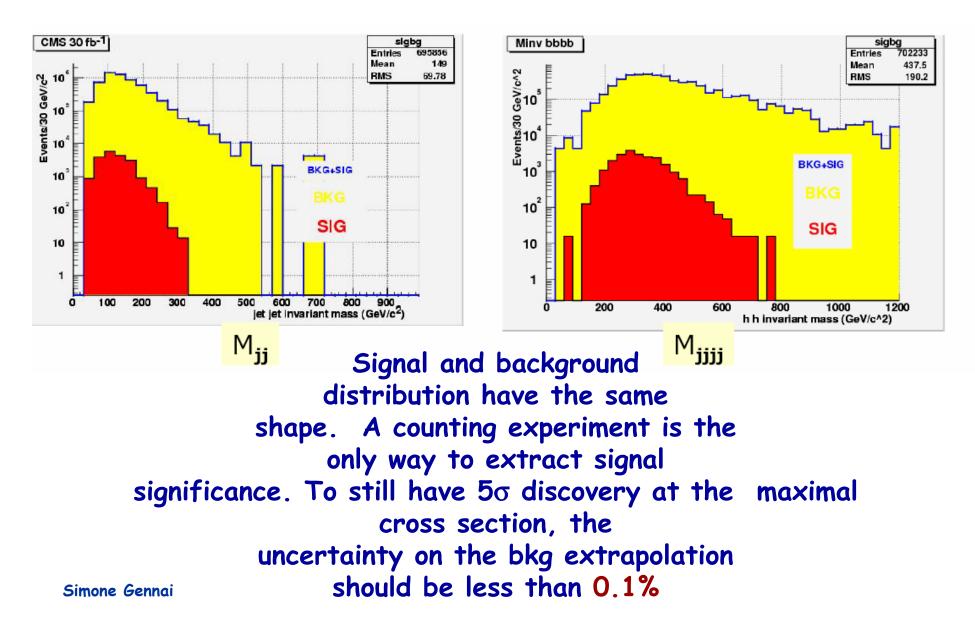
(strongly dependant on btag performances) - QCD multijet production JJJJ (+JJJJJJ, +JJJJJJJ, ...) (from 2->2 events + ISR, FSR and gluon splitting)

Main Resonant background:

- Zbb ->
$$\sigma$$
 ~ 349 pb

Level 1: Corresponding to (Energetic jet trigger Low Lumi) 95% eff on MC jets 1 jets E_{T} 164 GeV in $|\eta|$ < 0.8 OR 2 jets E_{τ} 129 in $|\eta| < 0.8$ OR 4 kHz rate (L1) 3 jets E_{τ} 76 in $|\eta|$ < 0.8 OR 4 jest E_{τ} 62 in $|\eta| < 0.8$ HLT: at least 4 jets, 2 of which have to be b-tagged (2 trks with SIP2D>2.) Off line: Invariant mass reconstruction: looking for 2 identical object (Higgs bosons) minimizing $(m(i,j)-m(k,l)) \rightarrow m_{h-rec}$ over all possible combination radion mass reconstruction $m(i,j,k,l) \rightarrow m_{\phi}$ Additional request: $m_{h-rec} - 1.5\sigma < m_{inv}(b,b) < m_{h-rec} + 1.5\sigma$ $m_{\phi-rec} - 1.5\sigma < m_{inv}(4b) < m_{\phi-rec} + 1.5\sigma$

Signal and background efficiency

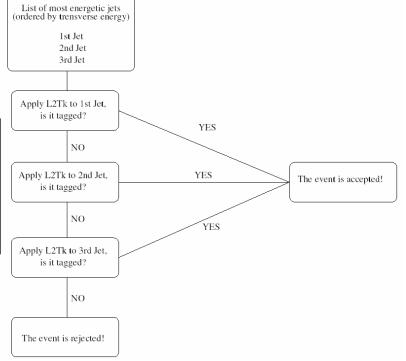

	Cross sec	€ Trigger (A+B)	8 Mass window	Exp events 30 fb ⁻¹
Signal	10,3 pb	0.038	0.031	9.5E+3
QCD 30-50	0,1957 mb	<1E-7 (95% CL)	<1E-7 (95% CL)	<5.7E+5
50-80	0,0258 mb	<5E-7 (95% CL)	<5E-7 (95% CL)	<3.8E+5
80-120	0,0036 mb	1E-5	7E-6	7.5E+5
120-170	0,0006 mb	1E-4	6.6E-5	1.1E+6
tt	614 pb	0.015	0.010	1.8E+5
ttjj	231 pb	0.056	0.026	1.8E+5
Zbb	52 pb	0.002	8E-4	1.2E+3

Simone Gennai

29

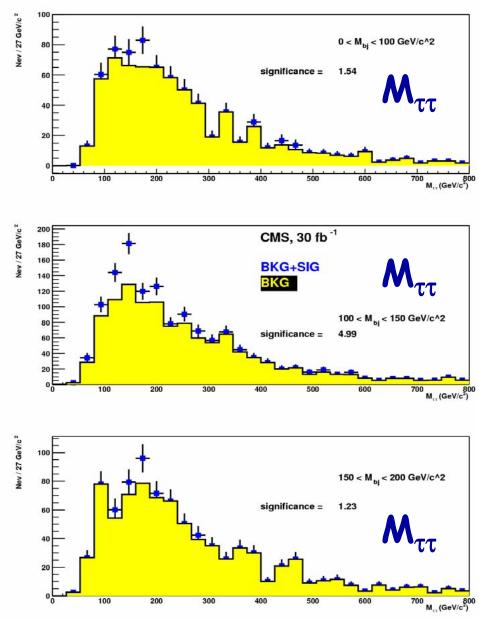
4 b final state results

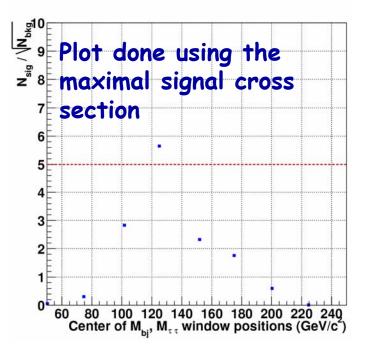
- The process: $gg \rightarrow \phi \rightarrow hh$ has been studied. Three different final states have been considered
 - γγbb
 - ττbb
 - bbbb
- A radion mass of 300 GeV and a Higgs boson mass of 125 GeV have been considered.
- For $\Lambda \sim 2$ TeV and ξ in the interval [-0.9, -0.4] the h->\gamma\gamma is not visible, while the ϕ ->hh (and ϕ ->ZZ->41) gives a signal at 5 sigma.
- The $\gamma\gamma$ bb final state offers the best possibilities to discover both the radion and the Higgs up to $\Lambda\sim2.5$ TeV, the $\tau\tau$ bb can give robust confirm to the radion discovery up to $\Lambda\sim2$ TeV. They can be used to distinguish between the SM Higgs and the radion.


× Level1: × e/muon+tau

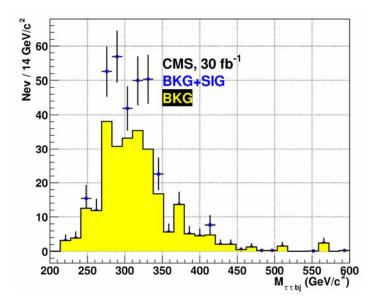
×HLT:

Trigger	Threshold (GeV)
Inlcusive isolated electron/photon	29
Inclusive isolated muon	14
Single tau-jet trigger	86
Electron*Jet	21*45

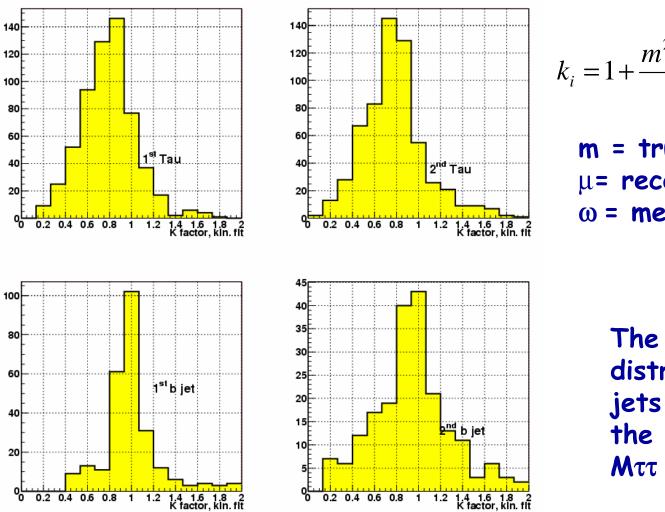

k e/muon: isolation (calorimeter+Tracker) and refined p_T cut
 k Tau: Isolation (Tracker)


Samples	L1 e [*] τ (%)	L1 $\mu^*\tau$ (%)	HLT $e^*\tau$ (%)	HLT $\mu^*\tau$ (%)	Total (%)
$\phi \to \tau \tau \mathrm{bb}$	44.3 ± 0.7	54.8 ± 0.7	7.0 ± 0.3	5.9 ± 0.3	$6~\pm~0.2$
$\mathrm{tt}_{\mathrm{had}}$	28.7 ± 0.2	32.1 ± 0.2	0.35 ± 0.02	0.49 ± 0.02	0.57 ± 0.02
$\mathrm{tt}_{\mathrm{tau}}$	22.6 ± 0.2	42.5 ± 0.2	1.4 ± 0.2	2.8 ± 0.2	$\textbf{3.1}\pm\textbf{0.2}$
Zbb	5.6 ± 0.2	10.7 ± 0.2	2.0 ± 0.2	3.1 ± 0.2	1.4 ± 0.2
Z+jets	2.6 ± 0.2	4.6 ± 0.2	0.55 ± 0.02	0.74 ± 0.02	0.35 ± 0.02
W+jets	22.8 ± 0.2	23.1 ± 0.2	0.22 ± 0.02	0.31 ± 0.02	0.039 ± 0.002

1st analysis, mass scan



We perform a simultaneus scan in the invariant masses of b and tau jets: 100 < Mbj <150 GeV ττ 100 < Mtt < 160 GeV


We have taken into account the "else where effect". It has small effect when significance is greater than 5

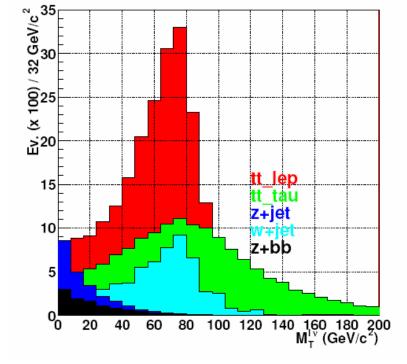
As signal and background are peaked at the same point, no further information can be extracted from the above plot

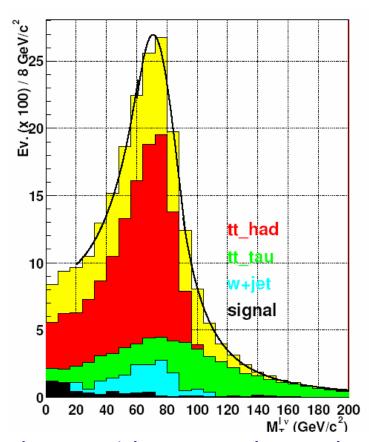
Kinematic fit: K-factors

 $k_i = 1 + \frac{m^2 - \mu^2}{\mu^2} \times \frac{\omega_j}{\omega_1 + \omega_2}$

m = true mass μ= reconstructed mass ω = measured energy

> The k-factor distributions for τ jets suffer from the long tail on the M $\tau\tau$ invariant mass.


Selection	Samples efficiency (%)					
	$\phi \to \mathrm{hh}$	tt_{had}	$\mathrm{tt}_{\mathrm{tau}}$	Z+bb	Z+jets	W+jets
Trigger	$6.0\pm$.2	$.57 {\pm} .02$	$3.1 {\pm}.2$	$1.4 \pm .2$	$.35 {\pm}.02$	$.039 {\pm} .002$
b-tagging	$2.8 {\pm}.2$	$.324 {\pm} .002$	$1.740{\pm}.005$	$.44 {\pm} .02$	$.0250 {\pm} .0005$	$.0084 \pm .0003$
$\Delta R_{\mathrm{l}\tau} > 0.1$	$2.6 {\pm}.2$	$.255 {\pm} .002$	$1.091 {\pm} .004$	$.30 {\pm} .02$	$.0188 {\pm} .0005$	$.0071 {\pm} .0003$
$p_T^b > 30 \text{ GeV},$						
$\max(p_T^b) > 55 \text{ GeV}$	$1.98{\pm}.15$	$.199 {\pm} .002$	$.736 {\pm} .003$	$.10 {\pm} .01$	$.0030 {\pm} .0002$	$.0025 \pm .0002$
$M_T \text{ lep} + \nu < 35 \text{ GeV}$	$1.1 {\pm}.1$	$.039 {\pm} .001$	$.118 {\pm} .001$	$.071 {\pm} .008$	$.0021 {\pm} .0001$	$.0005 \pm .0001$
$100~{\rm GeV} < M_{\tau\tau} < 160~{\rm GeV}$	$.52 {\pm} .07$	$.0054 \pm .0003$	$.0285 {\pm} .0006$	$.0244 {\pm} .005$	$.00067 \pm .00008$	$.00002 \pm .000015$
$100 { m GeV} < M_{\rm bj} < 150 { m GeV}$	$.33 {\pm} .05$	$.0018 {\pm} .0002$	$.0087 \pm .0004$	$.0090 {\pm} .003$	$.00028 \pm .00005$	0
$290~{\rm GeV} < M_{\tau\tau bj} < 330~{\rm GeV}$	$.27 {\pm} .05$	$.00054 {\pm} .0001$	$.0030 {\pm} .0002$	$.0054 {\pm} .002$	$.000063 \pm .00002$	0
Number of expected events	79	40	24	13	7	0


Table 1.7: Cumulative efficiency for the overall analysis (trigger and off-line).

S/sqrt(BKG)~8 with signal maximal cross section

How can we get the bkg shape?

We can have a bkg control sample (for the top and W+jets) using the selection on M_T^{ln} . ($M_T^{ln} > 30$ GeV) This selection ensure a signal free sample (contamination is <1.5% with the Max cross section).

- Fitting the bkg shape (after all cuts) we have a mean value of 285 GeV and a sigma of 46 GeV.
- Fitting the bkg shape using the selection on the M_T^{In} we get a mean of 292 GeV and a sigma of 46 GeV.
- We can estimate the Z+jets contribution from the lepton decay of the Z.