

TOP QUARK PHYSICS AT CMS

S. Slabospitsky

(on behalf of the CMS Collaboration) IHEP, Protvino, RUSSIA

Motivation

• *t*-quark production and decays are evaluated within the SM with high accuracy without any phenomenological parameters

 \bullet X-section production and differential distributions are calculated with $\mathcal{O}(10\%)$ accuracy

• t-quark decays through ONE decay channel, $t \to bW^+$. Other decay channels have very small branching ratios (less then $\mathcal{O}(10^{-3})$)

• due to very small life-time of t-quark (~ 10^{-24} sec, $\tau_t \ll 1/\Lambda_{\rm QCD}$) we expect no formation of top-hadrons, $T(t\bar{t})$ - or $M(t\bar{q})$ -mesons and $\Lambda(tqq)$ -baryons

any experimental observation of unusual process with top quark would be an indication of a New Physics beyond the Standard Model

current experimental status

• $t\bar{t}$ production cross-section Run-I, $\sqrt{s} = 1.8$ TeV CDF+ DØ: $\sigma_{t\bar{t}} = 6.2 \pm 1.7$ pb, $\sigma_{t\bar{t}}^{th} = 4.8 - 5.2$ pb Run-II, $\sqrt{s} = 1.96$ TeV,

CDF $\sigma(t\bar{t}) = 7.0^{+2.4}_{-2.1}(stat)^{+1.6}_{-1.4}(syst) \pm 0.4(lumi) \text{ pb}$ $D\emptyset \qquad \sigma(t\bar{t}) = 8.1^{+2.2}_{-2.0}(stat)^{+1.6}_{-1.4}(syst) \pm 0.8(lumi) \text{ pb}$ theory $\diamond \sigma(t\bar{t}) = 6.70^{+0.71}_{-0.88} \text{ pb}, m_t = 175 \text{ GeV}$

• *t*-quark mass: RPP-2002 (CDF + $D\emptyset$) $M_t = 174.3 \pm 5.1 \text{ GeV}$

Run-I (2004)	$M_t = 179.0 \pm 3.5(stat) \pm 3.8(syst) \text{ GeV}$
CDF: new Run-II data	$M_t = 171.2^{+14.4}_{-12.5}(stat) \pm 9.9(syst) \text{ GeV}$
$D\emptyset$ reanalysis of Run-I data	$M_t = 180.1 \pm 5.6(stat) \pm 5.5(syst) \text{ GeV}$

• electroweak (single) top production two channels were investigated:

 $\begin{array}{lll} t \text{ channel}: & qb \ \rightarrow \ tq' \\ s \text{ channel}: & q\bar{q} \ \rightarrow \ t\bar{b} \end{array} \Rightarrow \sigma(t): \sigma(s) \approx 2:1 \end{array}$

	Run I, $\sqrt{s} = 1.8 \text{ TeV}$			
	theory	CDF	$D\emptyset$	
t	$1.47\pm0.22~\mathrm{pb}$	$< 13 \mathrm{\ pb}$	< 22 pb	
s	$0.75\pm0.12~\mathrm{pb}$	< 18 pb	< 17 pb	
	Run II, $\sqrt{s} = 1.96$ TeV			
	theory	CDF	$D\emptyset$	
t	$1.98^{+023}_{-0.18}~{ m pb}$	$< 8.5 \ \mathrm{pb}$	< 19.8 pb	
s	$0.88^{+07}_{-0.06}~{ m pb}$		$< 13.8 \ \mathrm{pb}$	
s+t		$< 13.7 \ \mathrm{pb}$	$< 15.8 \ \mathrm{pb}$	

• *t*-quark properties

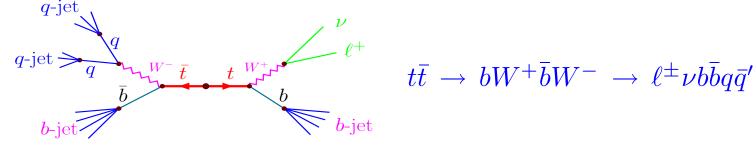
$$\begin{array}{lll} R_b & = & \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq)} = 0.99^{+0.31}_{-0.24} \\ |V_{tb}| & > & 0.75 \text{ at } 95\% \text{ CL } (3 \text{ generations}) \\ \Gamma_{W_{long}} & = & 55 \, {}^{+48}_{-53} \, \% \ (70\% \text{ theory}) \end{array}$$

• Run-I, $D\emptyset: t\bar{t} \to \ell^+ \ell^- X$ correlations:

$$\frac{d^2 N}{d\cos\theta_+ d\cos\theta_-} \propto (1 + A\cos\theta_+ \cos\theta_-) \quad \Rightarrow \begin{cases} A_{\rm SM} = 0.88\\ A_{exp} > -0.2 \end{cases} (at 68\% CL)$$

• FCNC decays: CDF + LEP-2 + HERA, upper limits on BR $(t \rightarrow qV)$, $V = g, \gamma, Z$

			$t \rightarrow$	CDF	LEP-2	HERA
\mathbf{CDF}	LEP-2	$\mathop{\mathbf{HERA}}_{+} e^{\pm}$	g q	$\leq 29\%$		
t u, c			γu	$\leq 3.2\% \ < 3.2\%$	$\leq 2.3\% \ \leq 2.3\%$	$\leq 0.29\%$
\downarrow		p u t	γc	$\leq 3.2\%$	$\leq 2.3\%$	
-4 , //	$\sim e$ $\sim u, c$		Z q	$\leq 32\%$	$\leq 8.1\%$	


• no narrow $R(t\bar{t})$ resonance was found with $M_R < 560 \text{ GeV}$ at $\Gamma_R = 0.012 M_R$

- top-quark production (tt and single top) leads to final states with:
 one or two isolated charged lepton (electron or muon)
 missing transverse energy (𝔅_T)
 at least two hadronic jets
 - \diamond at least one *b*-jet

⇒ all CMS sub-detectors, tracker, ECAL, HCAL, muon chambers will be explored for reconstruction of these objects
◇ p_T(ℓ) > 20 GeV and |η(ℓ)| < 2.4
◇ 𝔅_T > 20 GeV
◇ 𝔅_T > 20 GeV and |η(j)| < 4.5
◇ *b*-jets, |η(*B*)| < 2.4 with ε(b) ~ 50 - 60%, ε(c) ~ 10%, ε(q, g) ~ 1 - 2%,

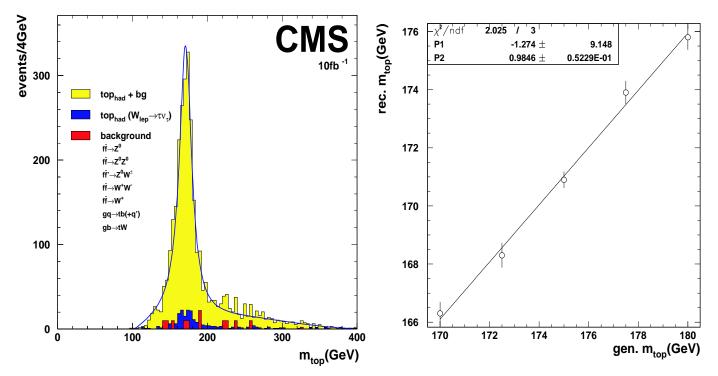
Top mass measurements

• semileptonic channel (L. Sonnenschein, CMS NOTE 2001/001)

main of background comes from W+jets production PYTHIA was used for signal and background generation the fast MC package CMSJET was used for CMS detector simulation selection criteria:

♦ only one isolated e^{\pm} or μ^{\pm} with $p_{\top} > 20$ GeV, $|\eta| < 2.4$, $\Delta R > 0.3$ (isolation) ♦ $E_{\top} > 20$ GeV

 \diamond at least 4 jets with $E_{\top} > 40$ GeV, exactly 2 *b*-jets with $E_{\top} > 50$ GeV, $\epsilon_b \approx 52\%$ $\diamond W \rightarrow q\bar{q}': 60 < M(j_1j_2) < 100$ GeV


 $\diamond W \rightarrow \ell \nu$: transverse mass of $(\ell \nu)$ -system, $m_{\top}(\ell \nu) < 100 \text{ GeV}$

 $\diamond \cos(\phi_t - \phi_{\bar{t}}) < -0.8$

 \diamond reconstructed top masses difference $|m_t - m_{\bar{t}}| < 25 \text{ GeV}$

• analysis details:

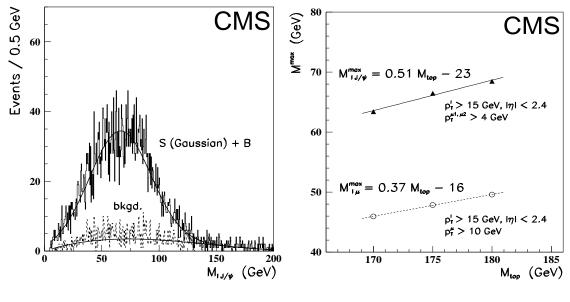
♦ 2.4×10^6 semileptonic events simulated with PYTHIA and reconstructed (10 fb⁻¹) ♦ after all cuts: $N_S = 2960 \pm 53$ (efficiency ≈ 0.2%), $N_B = 120 \pm 55$, $S/B \sim 25$

 \diamond the estimated total error on top mass

 $\Delta m_t = (0.9 - 1.3) \text{ GeV} + \text{absolute energy scale} \Longrightarrow \delta m_t \le 0.7 \%$

• various sources of the errors were investigated statistical error: ~ 0.25 GeV, uncertainty of top-quark $p_{\rm T}$ spectrum ~ 0.4 GeV • m_t from $t \to \ell J/\psi X$ decays

(I. Iashvili et al., CMS TN 1992/034; A. Kharchilava, CMS NOTE 1999/065)



♦ the invariant mass of (µ J/ψ) system is correlated to m_t
♦ no dependency of uncertainties on the jet energy scale
♦ only $\mathcal{O}(10^3)$ events are expected per year at high luminosity (100 pb⁻¹)

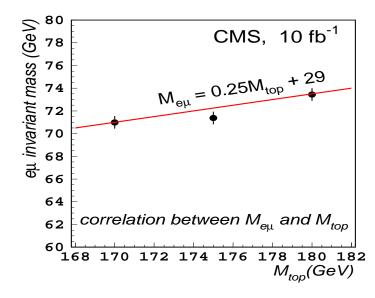
selection criteria:

- \diamond only one isolated e^{\pm} or μ^{\pm} with $p_{\perp} > 15$ GeV, and $|\eta| < 2.4$
- \diamond three non-isolated muons with $p_{\perp} > 4$ GeV, and $|\eta| < 2.4$
- \diamond the invariant mass of two of these muons being consistent with J/ψ mass

PYTHIA + Gaussian smearing of CMS detector resolution
4000 signal events could be expected for 4 years at high luminosity (100 fb⁻¹)
kinematic acceptance = 0.3 (due to soft muons), trigger reconstruction efficiency = 0.8

 $M_{\ell J/\psi}^{max} = 0.51 M_t - 23 \; (\text{GeV})$

• total error (stat.+syst.) is $\delta m_t \leq 1 \text{ GeV}$ precision is limited by theory (*b*-quark fragmentation) the systematics are completely different from m_t measurement from the semileptonic events • dileptonic $t\bar{t}$ decays (R. Kaur, S.B. Beri, J.M. Kohli, CMS IN 2001/018)


 $t\bar{t} \to bW^+\bar{b}W^- \to e^{\pm}\mu^{\mp}\nu\nu b\bar{b}$

the invariant mass of $(e^{\pm}\mu^{\mp})$ system is correlated to m_t selection criteria:

 \diamond two isolated e^{\pm} and μ^{\pm} with $E_{\perp} > 15$ GeV, and $|\eta| < 2.5$

 \diamond at least two jets with $E_{\rm T}>15$ GeV, and $|\eta|<2.5$

 \diamond isolation criterion: $\Delta R(\mu j) > 0.5$

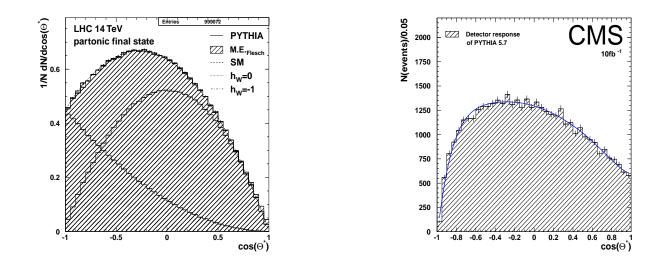
measurement of the W polarization in top decays

L. Sonnenschein, CMS NOTE 2001/001

SM predicts three different helicity states ($h_W = \pm 1, 0$) of W-boson in top decays. The right circular polarization ($h_W = +1$) is highly suppressed due to helicity conservation in the limit of vanishing b-quark mass. The fraction of the $h_W = 0$ state is large because of the large top mass:

$$\frac{\Gamma(h_W = -1)}{\Gamma_{tot}} = 0.297, \quad \frac{\Gamma(h_W = 0)}{\Gamma_{tot}} = 0.703, \quad \frac{\Gamma(h_W = +1)}{\Gamma_{tot}} = 0$$

the sensitive variable for the W polarization is the angle θ_{ℓ}^* between the lepton in the W rest frame and the W in the top rest frame:


$$\frac{1}{N}\frac{dN}{d\,\cos\theta^*} = \frac{3}{8}\frac{1}{1-f}(1-\cos\theta^*)^2 - \frac{3}{4}\frac{1}{1-f}\sin^2\theta^*$$

where $f = m_t^2/2m_W^2$ neglecting the b quark mass.

resulting distribution of $\cos \theta_{\ell}^*$

generator level

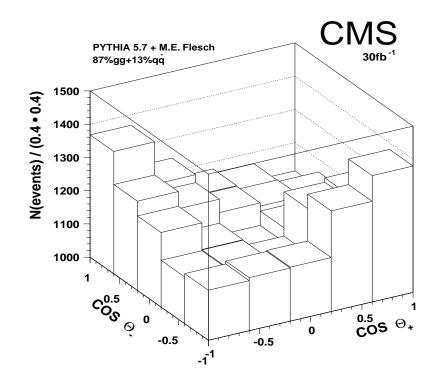
after detector simulation and event selection

analysis details:

♦ 2.4 × 10⁶ semileptonic events simulated with PYTHIA and reconstructed (10 fb⁻¹)
♦ selected signal events: $W^{\pm} \rightarrow e^{\pm}(\mu^{\pm})\nu$ ♦ expected accuracy on the measurements of $\frac{h_{W=0}}{h_{W \ tot}}$ is $\delta\left(\frac{h_{W=0}}{h_{W \ tot}}\right) = \pm 0.023(stat) \pm 0.022(syst)$

measurement of spin correlation in $t\bar{t}$ production

spin correlations are parametrized by the asymmetry


$$\mathcal{A} = \frac{N(t_L \bar{t}_L + t_R \bar{t}_R) - N(t_L \bar{t}_R + t_R \bar{t}_L)}{N(t_L \bar{t}_L + t_R \bar{t}_R) + N(t_L \bar{t}_R + t_R \bar{t}_L)}$$

$$\mathcal{A}(gg) = +0.431 \pm 0.002, \quad \mathcal{A}(q\bar{q}) = -0.469 \pm 0.003,$$

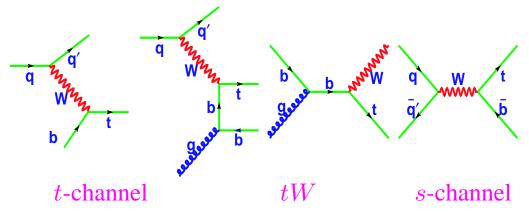
$$\mathcal{A}[t\bar{t} = gg(87\%) + q\bar{q}(13\%)] = 0.311 \pm 0.003$$

♦ top and topbar momenta could reconstructed from set of six kinematic equations

$$\frac{1}{N} \frac{d^2 N}{d\cos\theta_{\ell+}^* d\cos\theta_{\ell-}^*} = \frac{1}{4} \left(1 - \mathcal{A}\cos\theta_{\ell+}^* \cos\theta_{\ell-}^* \right)$$

 θ_{ℓ}^{*} is the angle between the ℓ in the top rest frame and the top in the $t\bar{t}$ pair rest frame

 $\diamond 10^6$ fully leptonic events $t\bar{t} \to bW^+\bar{b}W^- \to b\bar{b}\ell^+\ell^-\nu\bar{\nu}$ (corresponds to 30 fb⁻¹)


 $\mathcal{A} = +0.311^{+0.034}_{-0.035}(stat) \pm 0.028(syst)$

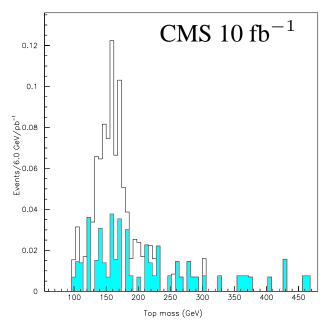
Electro-Weak top production

• investigations of the electroweak (single) t-quark production will allow to: \diamond direct measurement of V_{tb} CKM element (and check the unitarity of CKM) \diamond examine the structure of $Wt\bar{b}$ vertex

 \diamond search for possible New Physics effects (like FCNC, H^{\pm} , W', ...)

• three subprocesses contribute to single top production, $\sigma_{\rm EW}(t) \propto |V_{tb}|^2$

 $\sigma(t\text{-channel}) = 245 \pm 27 \text{ pb}$ S. Willenbrock *et al*, PR D56, 5919 $\sigma(tW) = 60 \pm 10 \text{ pb}$ A. Belyaev, E.E. Boos, PR D63, 034012 $\sigma(s\text{-channel}) = 10.2 \pm 0.7 \text{ pb}$ M. Smith *et al*, PR D54, 6696 • search strategy for *t*-channel D. Green *et al*, CMS NOTE-1999/048 (1999)

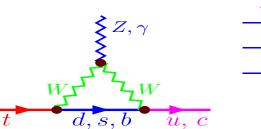

$$qb \to q't \Rightarrow q'_{
m forw} \ b \ \ell^{\pm} \ \nu$$

background events: $t\bar{t}$, W + 2jets, W + 3jets, and WZPYTHIA 5.72 was used for generation of the signal and background ($t\bar{t}$ and WZ) events VECBOS was used for W+jets production

selection at generation level (PYTHIA)
only one charged lepton (e[±] or μ[±], p_⊤ > 20 GeV, |η| < 2.5 (is used in the analysis)
at least one cluster with E_⊤ > 15 GeV and |η| < 2.5 and two or less clusters with E_⊤ > 25 GeV and |η| < 2.5
B-tagging parameterization (from full simulation): |η| < 2.4, ϵ(b) is typically 50%, mis-tagging is low, 1-2%

• full simulation of CMS calorimeters (ECAL and HCAL), CMSIM (version 111, GEANT3) jets: E(cell)> 5 GeV, clustering algorithm ($R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.5$)

• minimal value of $|P_z(\nu)|$ is used for W-boson momentum reconstruction



search strategy \diamond one isolated e^{\pm} or μ^{\pm} with $p_{\pm} > 20$ GeV and $|\eta| \le 2.5$ $\diamond E_{\pm} \ge 20$ GeV and $50 < m_{\pm}(\ell\nu) < 100$ GeV \diamond one *b*-tagged jet with $p_{\pm} \ge 20$ GeV and $|\eta| \le 2.5$ \diamond one forward jet with $p_{\pm} \ge 50$ GeV and $2.5 < |\eta| \le 4.0$ \diamond leading jet with $p_{\pm} < 100$ GeV $\diamond M(jj) < 80$ GeV or M(jj) > 100 GeV \diamond mass window: $M_{rec}(W + B) = 160 \pm 20$ GeV

- after cuts: N(signal) = 6600, N(bkg) = 1900, S/B = 3.5:1 for 10 fb⁻¹
- selection efficiency = 1.2% (including BR($W \rightarrow \ell \nu$))
- \bullet dominant background comes from W+charm
- forward jet tag is very effective in enhancing of S/B ratio

Search for rare FCNC top decays

 \diamond theoretical predictions for ${
m BR}(t
ightarrow qV), V = g, \ \gamma, \ Z$

$t \rightarrow$	SM	two-Higgs	SUSY
$g \ q$	5×10^{-11}	10^{-6}	10^{-3}
$\gamma \ q$	5×10^{-13}	10^{-6}	10^{-5}
Zq	$\sim 10^{-13}$	10^{-9}	10^{-4}
	-		

• search strategy: F. Gianotti *et al*, CERN-TH/2002-078, hep-ph/0204087 (2002). $t\bar{t}$ pair production

$$pp
ightarrow t ar{t} X, \quad ext{with} \ \ t
ightarrow qg, \quad t
ightarrow q\gamma, \quad t
ightarrow qZ$$

the other top decays in the SM mode: $t \rightarrow bW(\rightarrow \ell \nu)$:

- $\diamond t\bar{t}$ (800 pb) + single top (240 pb)
- ♦ $W(\rightarrow e, \mu) + jets$ (~ 7500 pb for $\hat{k}_{\top} > 20$ GeV)
- ♦ WW + WZ + ZZ (110 pb)
- $\diamond W \gamma$ (17.3 pb)

• TopReX 3.25 event generator is used for signal and background simulation PYTHIA 6.158 is used for fragmentation all events passed through CMSJET 4.703 for detector simulation

selection criteria:

 \diamond an isolated photon with $E_{ op} > 75$ GeV, and $|\eta| < 2.5$

 \diamond 1(3) isolated leptons with $E_{\rm T}>20$ GeV, and $|\eta|<2.5$

 $\diamond N(J) \geq 2$ with $E_{\rm T} > 30(50)$ GeV, and $|\eta| < 4.5$

 \diamond one *b*-tagged jets

 $|M(B+W) - m_t| \le 25 \text{ GeV} \text{ and } |M(jet + \gamma(Z,g)) - m_t| \le 25 \text{ GeV}$

after application of all cuts separately for each channel one could expect (for 100 pb^{-1})

	$t ightarrow q \gamma$	t ightarrow qZ	t ightarrow qg
$egin{array}{c} N(S) \ N(B) \end{array}$	628	31	233
N(B)	38	3.9	15000
BR	2.5×10^{-5}	1.6×10^{-4}	1.6×10^{-3}

future promises and expectations

	present	Run-II	CMS
$\sigma(t\bar{t})$	$6.2\pm1.7 \mathrm{pb}$	6–8 pb	830 pb
$\delta(\sigma(tar{t}))$	25%	10%	10%
$\delta(\sigma(t)_{EW})$		20%	10%
$\Delta(m_t)~{ m GeV}$	4.3	2 (?)	$\mathcal{O}(1)$ GeV
$\delta(m_t)$	2.4 %	1.1 %	$\mathcal{O}(0.5\%)$
spin correlations	A > -0.2 (0.88)	?	0.3 ± 0.05
$\delta V_{tb} $ (BR)	15%	3%	?
$\delta V_{tb} $ (EW)	-	12%	$\mathcal{O}(5)$ %
$\mathbf{BR}(t \to \gamma q)$	0.29%	0.20%	2.5×10^{-5}
$BR(t \rightarrow Zq)$	8.1%	1.3%	$1.6 imes 10^{-4}$
${ m BR}(t ightarrow gq)$	29%	0.06%	0.16%

Conclusions

- CMS detector will be able to study different aspects of the top quark physics
- three methods of the t-quark mass measurements were investigated
- CMS could be achieved the accuracy of m_t up to 1 GeV (the systematic uncertainty)
- spin-spin correlations in $t\bar{t}$ production could be measured with $\sim 15\%$ accuracy
- CMS will be able isolate the single top events with S/B=3.5:1 and a clear peak visible in M(Wb) distribution
- forward jet tag is a crucial point in the study of t-channel single top production
- CMS could reach a high sensitivity to rare FCNC top-quark decays, BR $(t \rightarrow q\gamma) \sim 10^{-5}$, BR $(t \rightarrow qZ) \sim 10^{-4}$, BR $(t \rightarrow qg) \sim 10^{-3}$