Relic density in SUGRA models

- Relic density in mSUGRA models
- Uncertainties from SUSY spectrum
- Implications for LHC
- Non universal models
- Remarks on direct detection

Introduction

- Supersymmetric models with R parity conservation have a good darkmatter candidate: neutralino LSP
- The WMAP precise measurement of the relic density strongly constrains supersymmetric models :

 $.094 < \Omega h^2 < .129$ (2 sigma)

PLANCK is expecting to reach a precision of 2-3% (~2007)

• In mSUGRA one must appeal to very specific mechanisms to reach agreement with WMAP. The main reason

The LSP is mostly bino

- A bino LSP annihilates into fermion pairs through
 - t-channel exchange of right-handed slepton
- The coupling is U(1) strength → annihilation cross section for neutralino pairs is not efficient enough → too much relic density

→Need rather fine adjustment of parameters to meet WMAP

Is this generic of all MSSM models? (here consider only neutralino LSP)
LHC Vienna 14/07/2004
G. Belanger

Relic density

The number density \boldsymbol{n} of a given particle is described by the Boltzmann equation

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \left[n^2 - n_{eq}^2 \right] \tag{4}$$

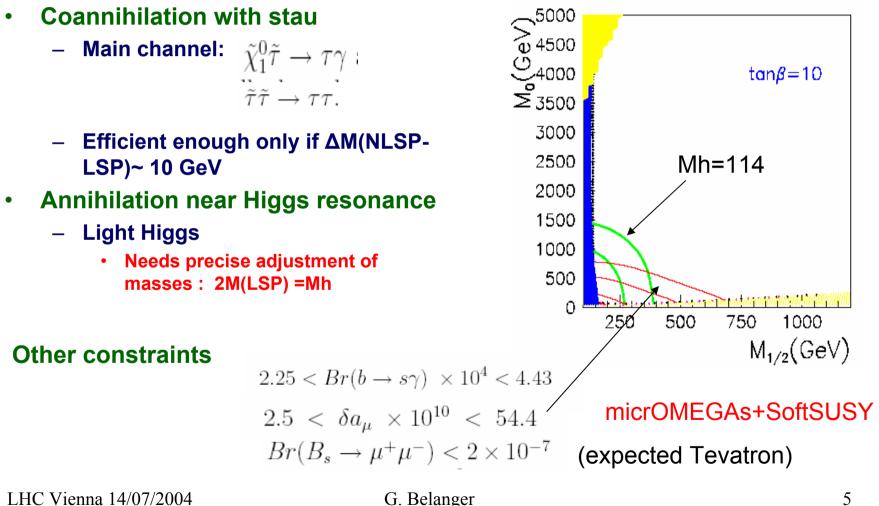
 $<\sigma v>$: thermally averaged annihilation cross-section

- v :relative velocity
- Computation of thermally averaged cross section

$$<\sigma v>=\frac{\sum_{i,j}g_{i}g_{j}\int\limits_{(m_{i}+m_{j})^{2}}ds\sqrt{s}K_{1}(\sqrt{s}/T)p_{ij}^{2}\sigma_{ij}(s)}{2T(\sum_{i}g_{i}m_{i}^{2}K_{2}(m_{i}/T))^{2}}$$

Suppression factor

$$\exp^{-\Delta M/T_f}$$
 $(T_f \approx M_{LSP}/25)$

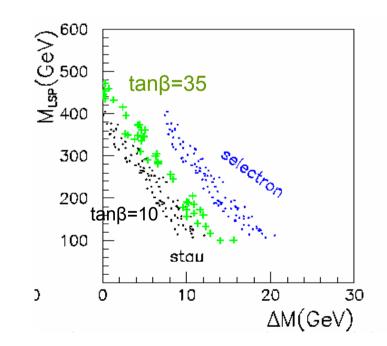

- Input parameters : Susy Les Houches Accord
 - Pole masses, mixing matrices ...
 - These parameters are taken from SUSY spectrum calculator code
 - Suspect, Isasugra, Softsusy, SPheno

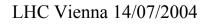
Public codes for relic density calculation

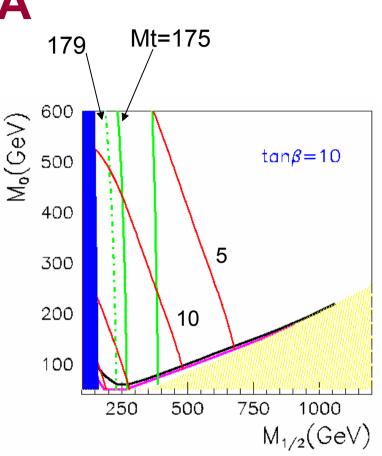
- DarkSUSY4.0 (2004) Gondolo, Edsjo et al.
 - Relic density, direct/indirect detection,
 - Includes gaugino+slepton coannihilations
 - Isajet
- micrOMEGAs1.3 (2004) GB, Boudjema, Pukhov, Semenov
 - Includes all coannihilation channels and complete tree-level matrix elements for all processes
 - Loop corrected sparticle masses and mixings (taken from SUSY spectrum calculator codes interfaced via Susy Les Houches Accord)
 - General MSSM model, mSUGRA, non-universal SUGRA
 - Loop corrected Higgs masses and widths, including QCD and SUSY QCD corrections (ΔMb)
 - NLO corrections to b->s gamma
 - Other constraints: g-2, $\Delta \rho$, Bs-> $\mu \mu$
 - Also provides parton level cross sections (2->2) and decay widths (1->2) for any process in MSSM
 - wwwlapp.in2p3.fr/lapth/micromegas

mSUGRA

Mt=175 GeV

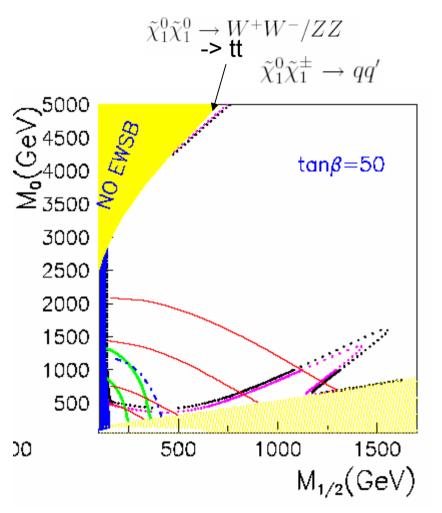

LHC Vienna 14/07/2004


mSUGRA


- Bulk has disappeared
- Coannihilation with stau
 - Main channel:

$$\tilde{\chi}_1^0 \tilde{\tau} \to \tau \gamma : \quad \tilde{\tau} \tilde{\tau} \to \tau \tau$$

 Efficient enough only if ΔM(NLSP-LSP)~ 1-15 GeV



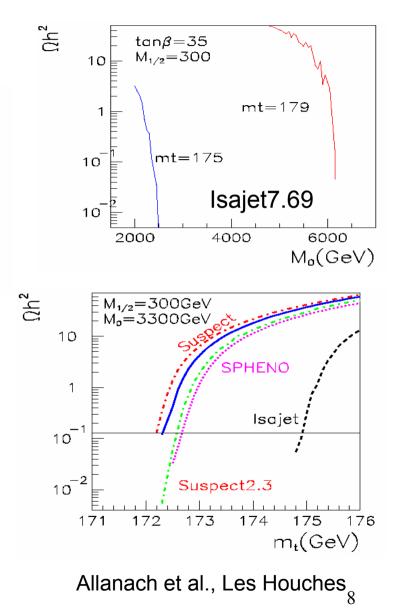
M(LSP)~M(stau) < 450 GeV Squarks < 2TeV Gluino< 2.3 TeV

mSUGRA at large tanβ

- Heavy Higgs resonance (funnel)
 - Heavy Higgs enhanced coupling to b quarks
 - Large width
 - Acceptable relic density if
 - M(LSP)-M_A/2 ~Γ_A
 - Important contribution of diagram with Higgs exchange possible far from resonance if M(LSP)<200GeV
 - Constraint from b->sγ important
- Focus point: increasing the Higgsino component of neutralinos
 - μ is small, $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^+$ are light Efficient annihilation/coannihilation into gauge bosons Typically degenerate gauginos lead to $\Omega h^2 < .094$

Focus point region and Mt

Strong dependence on the top quark mass


Running of $m_{H_2}^2$ very sensitive to top Yukawa

$$\frac{m_{H_2}^2}{dt} \approx \frac{3}{8\pi^2} h_t (m_{\tilde{Q}}^2 + m_{\tilde{U}}^2 + m_{H_2}^2 + A_t^2)$$

 μ parameter also sensitive to top Yukawa

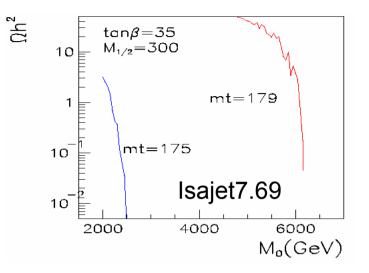
$$\mu^2 = \frac{\overline{m}_{H_1}^2 - \overline{m}_{H_2}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{1}{2}M_Z^2$$

- Increasing Mt pushes focus point towards heavier M₀
- Even with ΔMt=1 GeV, prediction for Ω can vary by more than one order of magnitude
- Dependence on the code used for evaluation of supersymmetric spectrum: critical parameter is μ

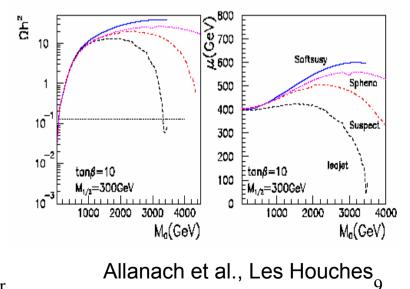
LHC Vienna 14/07/2004

G. Belanger

Focus point region and Mt


Strong dependence on the top quark mass

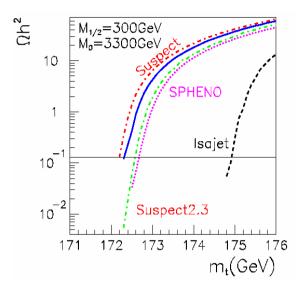
Running of $m_{H_2}^2$ very sensitive to top Yukawa

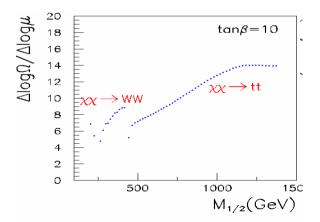

$$\frac{m_{H_2}^2}{dt} \approx \frac{3}{8\pi^2} h_t (m_{\tilde{Q}}^2 + m_{\tilde{U}}^2 + m_{H_2}^2 + A_t^2)$$

 μ parameter also sensitive to top Yukawa

$$\mu^2 = \frac{\overline{m}_{H_1}^2 - \overline{m}_{H_2}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{1}{2}M_Z^2$$

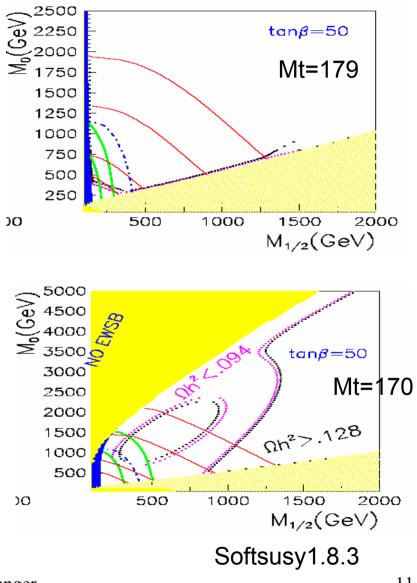
- Increasing Mt pushes focus point towards heavier M₀
- Dependence on the code used for evaluation of supersymmetric spectrum: critical parameter is μ




LHC Vienna 14/07/2004

G. Belanger

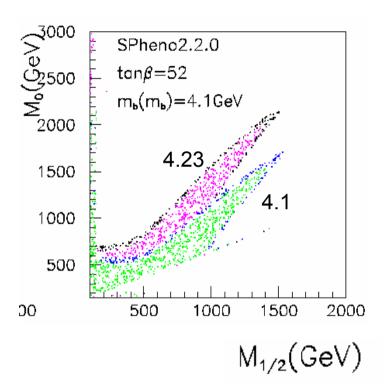
Relic density and MSSM parameters


- Even with ΔMt=1 GeV, prediction for Ω can vary by more than one order of magnitude
- In terms of MSSM parameters rather than mSUGRA prediction for Ωh^2 more stable
- What is the precision needed on the MSSM parameters to have accurate prediction for the relic density in WMAP favoured regions → test of the cosmological model
 - Work within ALC-cosmo group
- In focus point need to know μ to 1% for $\Delta \Omega {\sim} 10\%$

Impact of top quark mass

- Increasing Mt also increases heavy Higgs mass: the Higgs funnel almost disappears for Mt=179GeV
- Lighter top → heavy Higgs mass and µ decrease
 - more Higgs funnel and merges with focus point
 - Focus point for intermediate tanβ
- Large uncertainty in the relic density prediction is largely due to uncertainty in spectrum calculation.

Higgs funnel and mb(mb)

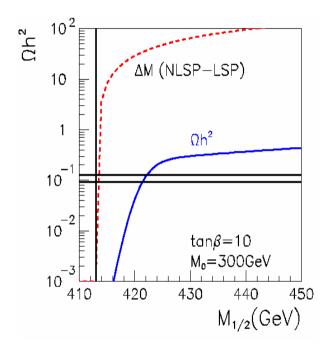

Position of the Higgs funnel also depends on mb(mb)

Running of $m_{H_1}^2$ sensitive to bottom Yukawa (large at high $\tan \beta$)

 $\frac{m_{H_1}^2}{dt} \approx \frac{3}{8\pi^2} h_b (m_{\tilde{Q}}^2 + m_{\tilde{D}}^2 + m_{H_1}^2 + A_b^2)$

Pseudoscalar mass then also sensitive to bottom Yukawa

$$M_A^2 = \frac{1}{\cos 2\beta} (\overline{m}_{H_2}^2 - \overline{m}_{H_1}^2) + \frac{s_\beta^2 t_1}{v_1} + \frac{c_\beta^2 t_2}{v_2} - M_Z^2$$

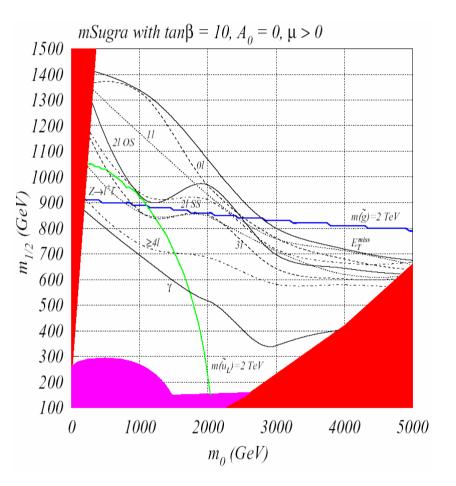

mSUGRA : A₀

A0= -1700 GeV

- New possibility: the stop can be NLSP
 - Large mixing needed
- Coannihilation with stop

 $\tilde{\chi}_1^0 \tilde{t}_1 \to tg, W^+ \bar{b}$

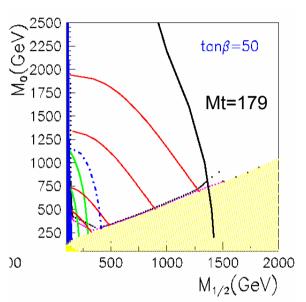
- ΔM~30-50GeV
- Constraints from precision measurements + direct limits also change with A0, stop NLSP only consistent with b->sγ and Mh for large negative mixing

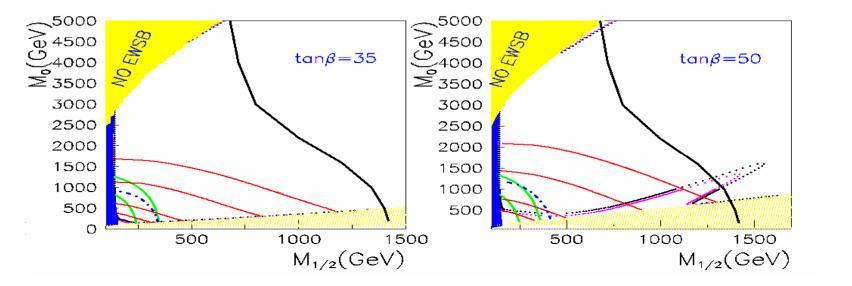


Reach of LHC in mSUGRA

- Low M0
 - $\tilde{q}\tilde{q}, \ \tilde{q}\tilde{g} \ \text{and} \ \tilde{g}\tilde{g}$
 - Leptons in decay chains
- As M0 increases
 - $[\tilde{g} \rightarrow \tilde{q}_R] \quad \tilde{q}_R \rightarrow q \widetilde{Z}_1$
 - Missing Et
- Eventually

$$\tilde{g} \rightarrow \tilde{t}_1 t$$


Only 3-body decays of gluinos Reach ~ gluino 1.8TeV



Baer et al., hep-ph/0304303

Implications for LHC

- Coannihilation region:
 - squarks/gluinos are accessible at LHC except part of large tanβ
- Focus point region: heavy sfermions/light gauginos
 - Where this occurs in mSUGRA depends on the value of Mt, heavy top pushes towards large m0
 - Hard for LHC, only gluino accessible no squarks
- Models where MA =2M(LSP)
 - Models with very heavy Higgs and neutralinos are acceptable: whole spectrum could be heavy, possible only large tanβ

15

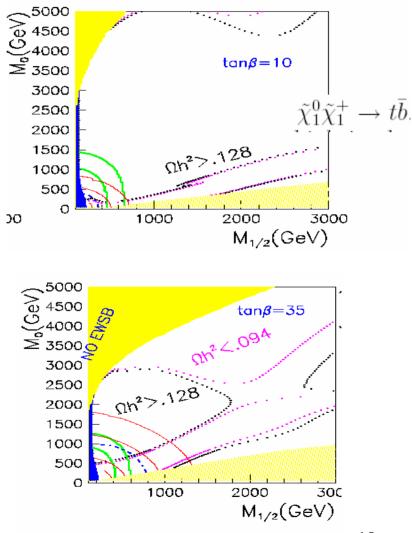
Beyond mSUGRA

- Changing the nature of LSP has strong influence on predictions for the relic density: any model where LSP has significant Higgsino and/or wino component will have more efficient annihilation channels as well as coannihilation channels with charginos/neutralinos
- Changing the relation between neutralino mass and Higgs mass → annihilation through heavy Higgs can take place more easily
- Introducing some non universality in gaugino masses at GUT scale influences both heavy Higgs spectrum and wino/Higgsino component of LSP.
 - Heterotic orbifolds models: dilaton-dominated or moduli dominated
 - Binetruy et al hep-ph/0308047
 - AMSB ...
- Alternatively one could modify universality condition on Higgsino masses also affects μ and MA
- In all models coannihilation with sleptons or other sfermions remain possible in specific regions of parameter space (need ΔM ~1-10GeV for sleptons, can afford larger for squarks)

Non universal gaugino masses

- Recall μ , M1,M2 determine the nature of the neutralino LSP
 - μ << M1,M2 → Higgsino
 - − M1<<M2, μ → bino
 - M2< M1, μ → wino
- Approximate solution to RGE

$$\mu^2 ~\approx~ -0.5 M_Z^2 + 0.06 M_0^2 + 2.6 {M'}_3^2 - 0.2 {M'}_2^2 +$$


− If M3< M2 \rightarrow partial cancellation $\rightarrow \mu$ smaller

$$M_A^2 = -M_Z^2 + 1.08M_0^2 + 2.6{M'}_3^2 + 0.28{M'}_2^2 + 0.22M_2'M_3'$$

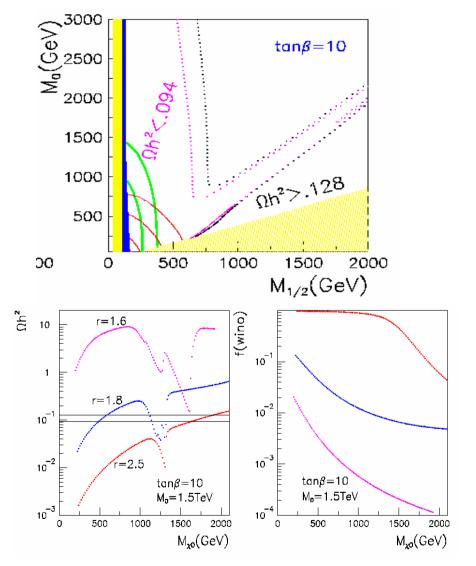
− If M3< M2 \rightarrow MA decrease, can find 2M(LSP) ~MA even for small tanβ

Relaxing universality: M₃<M₂=M₁

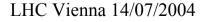
- Heavy Higgs pole appears at small tanβ
- Find focus point region -> LSP more Higgsino
- Squarks and gluinos are lighter than in mSUGRA for a given M1/2
 - Gluino 3TeV ~ M1/2~2.8TeV
 - Focus point: M1/2~1.4TeV
 - Heavy SUSY spectrum is acceptable from relic density point of view
- In Higgs funnel: MA~2M(LSP)
 - No SUSY decay mode for the heavy Higgs

Relaxing universality : the wino LSP

- M1>M2 at GUT scale : increasing the wino content of the LSP makes for more efficient annihilation → relic density constraint is easily satisfied
- Preferred channels:
 - $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \mathbf{W} \\ \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{+} \rightarrow q \bar{q}, Z W$


 $\int_{-1}^{10^{-1}} \int_{-1}^{10^{-1}} \int_{-$

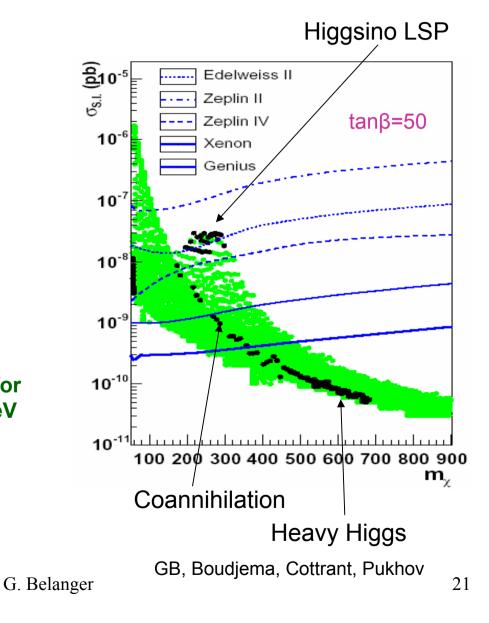
GB, Boudjema, Cottrant, Pukhov, Semenov


- M1~1.8M2 at GUT scale →M1~M2 at weak scale
 - LSP is mixed wino/bino

The nature of the LSP

- M1~1.8M2 at GUT scale
 - M1~M2 at weak scale
 - Wino LSP
 - Heavy Higgs annihilation
 - →tt,bb
 - Charged Higgs resonance
 - M(LSP)~600GeV

- M1>>M2 : not enough dark matter unless neutralinos are very heavy >1.5TeV
 - Whole SUSY spectrum heavy

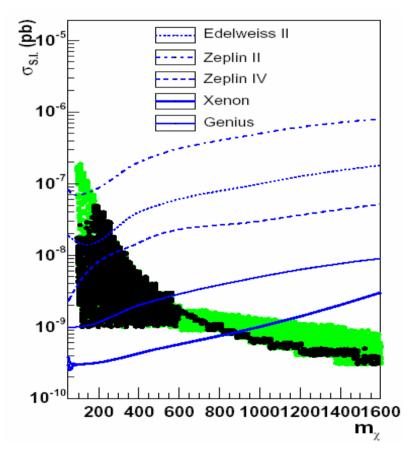


Direct detection

- Many experiments under way, improvements planned → ton scale
- Spin independent cross section proceeds through Higgs exchange, squark exchange
 - LSP coupling to Higgs large for mixed gaugino/Higgsino LSP
 - mSUGRA-> focus point
 - Squark contribution large at low M₀

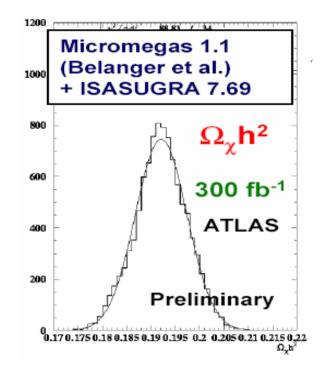
Constraints from mh, b->sy

- Coannihilation region not favourable for direct detection unless M(LSP)<400GeV
- Current detectors are not sensitive enough to probe mSUGRA but focus point will be accessible in near future



LHC Vienna 14/07/2004

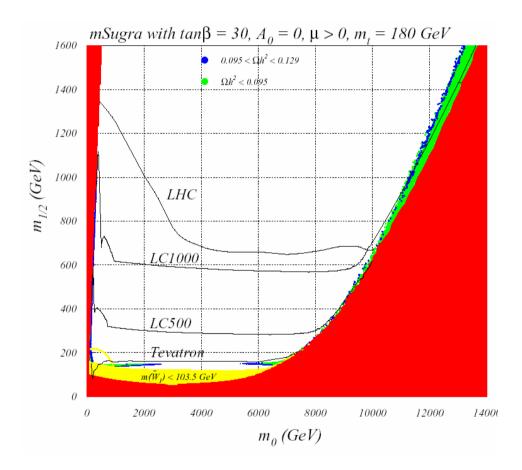
Direct detection in nonuniversal models

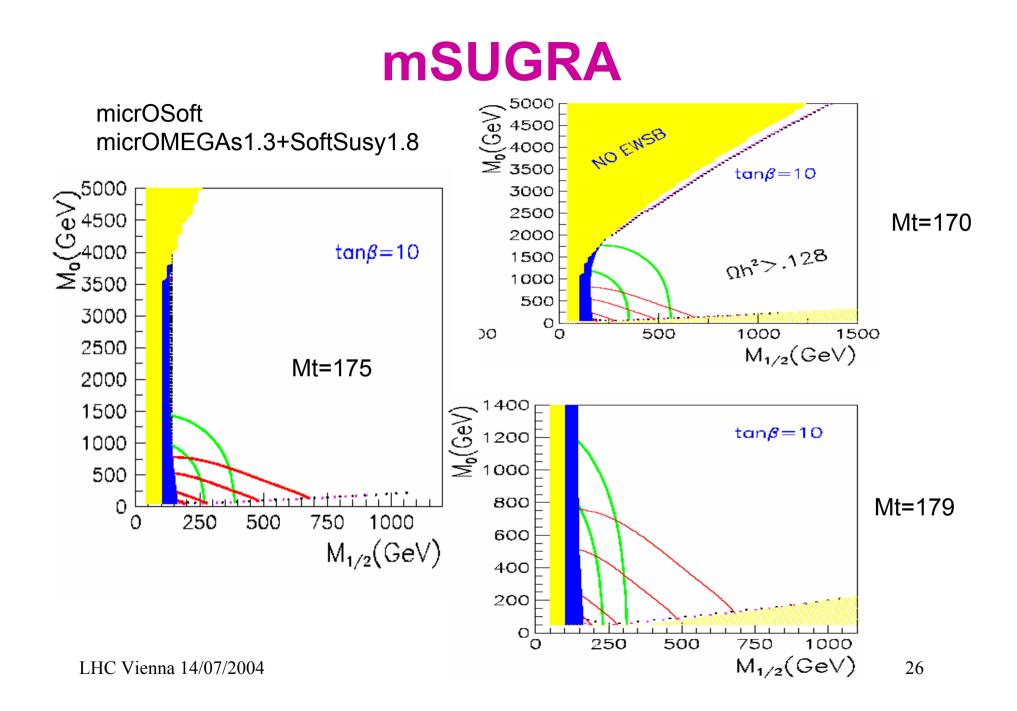

- Same mechanism that makes for effficient annihilation and good relic density also gives large direct detection cross sections except coannihilation and resonance annihilation
- Models with wino LSP (M1>M2) can have enhanced coupling to Higgs
 - Higgs coupling to neutralinos requires mixed Higgsino/gaugino state
- Heavy Higgs annihilation region: beyond reach of ton-scale detectors

Ωh²<.129

Determination of parameters and relic density

- Within mSUGRA SPS1A: precision on mSUGRA parameters at the LHC lead to 2-3% uncertainty in Ωh²
- In WMAP favoured region need more precision since parameters rather fine tuned:
 - Coannihilation
 - Large tanβ: Higgs mass
 - Focus/Higgsino: μ




Tovey, Polesello

Conclusions

- In mSUGRA can only satisfy relic density constraint in specific region of parameter space because the LSP is bino
 - Coannihilation (stau and also stop)
 - Focus point : Higgsino
 - Higgs exchange
- Position of focus point/Higgs depends on standard model parameters : Mt, Mb . Higgsino LSP interesting scenario from dark matter point of view
- Higgsino LSP scenario can be associated with heavy sqaurks: only gluino may be accessible at LHC, complementarity with direct detection
- Heavy Higgs funnel (large tanβ) : difficult to discover SUSY
- Models where LSP is not pure bino satisfy more easily relic density constraint : implications for searches at LHC?
- Using measurements from LHC what can we learn on cosmology?

mSUGRA : complementarity

