

1

Measuring Gauge Boson Couplings with CMS

Alexander Oh, CERN-EP on behalf of the CMS collaboration

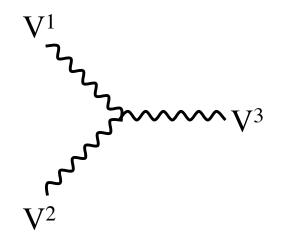
Physics@LHC, 13-17 July 2004, Vienna

V2.1

Outline

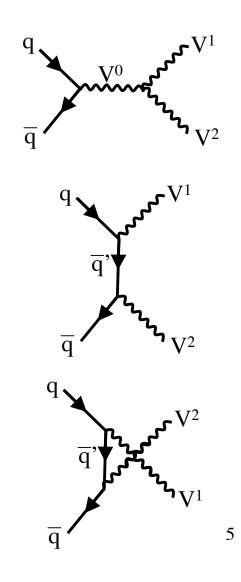
- Introduction
- Gauge Couplings
- Measurements & Methods
- Sensitivity to anomalous couplings
- Summary

Introduction



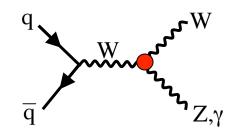
- The SM is based on gauge-invariance.
 - The non-Abelian gauge group structure predicts specifically the couplings between electroweak gauge bosons.
- Testing the gauge boson self couplings (GC) tests a fundamental aspect of the SM.
- Deviations will hint to Physics not described within the SM, changes to the SM could involve:
 - Extra fermions
 - extension of gauge group
 - Strong interactions of gauge bosons
- · Complements direct searches for new physics.

Introduction


- Triple Gauge Boson (W,Z,γ) Couplings
 - Charged couplings
 - Allowed in the Standard Model
 - WWZ, WW γ
 - Neutral couplings
 - Forbidden in the Standard Model
 - ZZZ , ZZ γ , Z $\gamma\gamma\gamma$

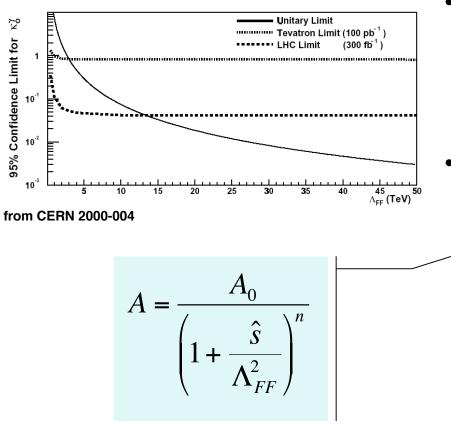
Introduction

- Production Processes at the LHC
 - Leading order Feynman diagrams:
 - Only s-channel has three boson vertex
 - Anomalous couplings tend to manifest in:
 - Cross section enhancement
 - Enhancement at high p_T of V^{1,2}.
 - Production angle.
 - closer look at the parametrisation of the anomalous three boson vertex:



Triple Gauge Couplings

$\kappa_{\gamma,Z}$	1	Dim4, ∝ √s
$\lambda_{\gamma,Z}$	0	Dim6, ∝ s
g_1^Z	1	Dim4, ∝ √s

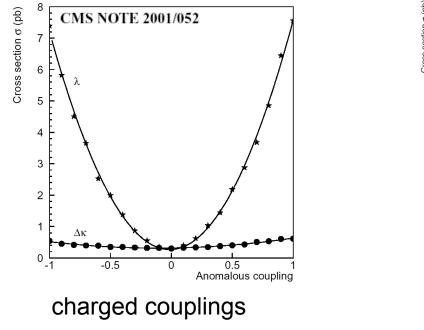

h ₁	dim6 , \propto S ^{3/2}	!CP
h ₂	dim8 , \propto S ^{5/2}	!CP
h ₃	dim6 , \propto S ^{3/2}	CP
h ₄	dim8 , \propto S ^{5/2}	СР
f ₄	dim6 , \propto S ^{3/2}	!CP
f ₅	dim6 , \propto S ^{3/2}	CP

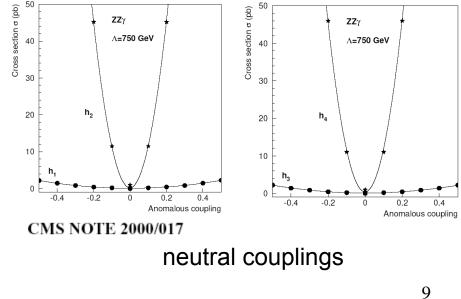
- Non-abelian SU(2)_LxU(1)_Y gives WWZ and WW_Y vertices.
 - Most general Langrangian gives 14 free parameters => effective Langrangian.
 - Requiring C, P conservation and EM Gauge invariance leaves 5 parameters.
- ZZZ, ZZγ and Zγγ vertices are forbidden in the SM.
 - Higher order corrections ≈10⁻⁴
 - The vertex is described by
 12 parameters requiring Lorentz + EM
 gauge invariance, Bose symmetry.

Form Factors

- Non-zero anomalous couplings violate unitarity => need for Form Factors (FF) to safeguard high energy limit.
- Choice of FF arbitrary
 - Anything that guards unitarity.
 - -- Common is the dipole FF.
 - $n > n_{Coupling}$ sufficient
 - Derived limits on A₀ are dependent on FF if integrated over s.
 - Fixing s allows measuring Λ_{FF} .

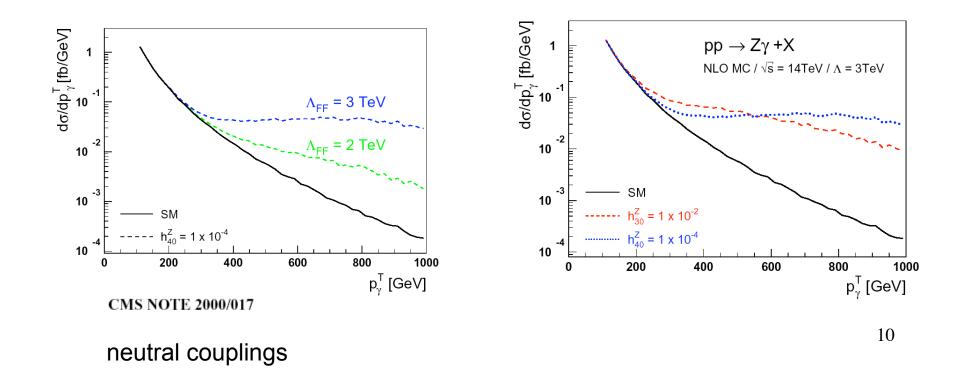
- Sensitivity to anomalous TGC
 - Total cross-section
 - enhanced p_T distribution at high di-boson masses
 - Angular distribution
- Charged Coupling Signatures
 - $\; W\gamma \Rightarrow I\gamma \nu$
 - $-WZ \Rightarrow III_V$
- Neutral Coupling Signatures


$$- \ \mathsf{Z} \gamma \Rightarrow \mathsf{II} \gamma$$



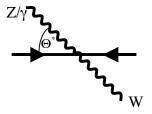
- Total cross-section dependence ($|\eta|$ < 2.5, \sqrt{s} =14 TeV)
 - $\sigma_{tot} \propto$ (anomalous coupling)² dependence (linear in the Lagrangian)

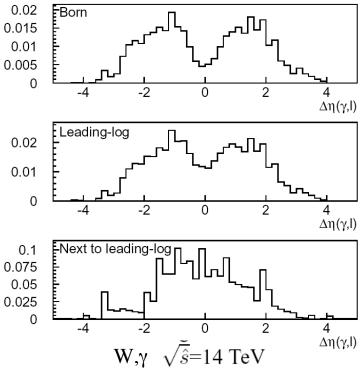
Baur et al. generator including α_s .



Baur et al. generator including $\alpha_{\rm s}.$

- p_T distribution
 - Enhancement for high di-boson masses.
 - Notice dependence on $\Lambda_{\rm FF}$ scale.





Baur et al. generator (BHO) including α_s .

- angular distribution
 - W, Z/ γ : interference at Born level gives "radiation zero" at $\cos(\Theta^*) \approx -0.1(Z), -0.3(\gamma)$
 - The observable rapidity difference $\Delta \eta$ of lepton and Z/ γ shows a dip.
 - NLO and anomalous contributions tend to "wash out" the interference.

CMS NOTE 2001/052

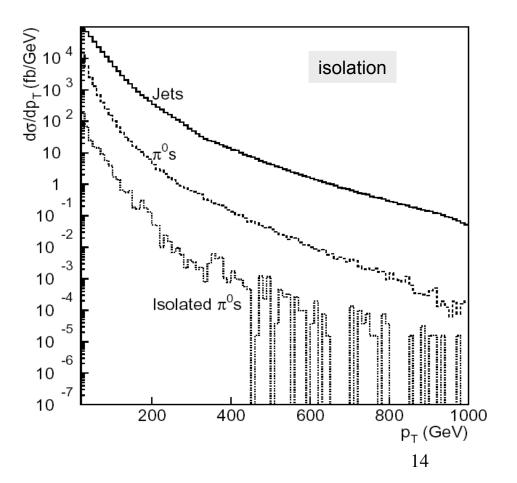
Experimental Methods

Event selection

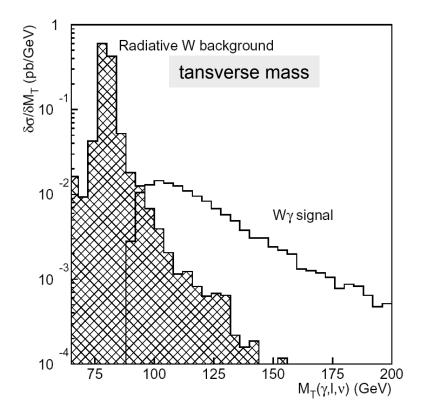
- Select only leptonic channels (e,µ) to avoid QCD background.
- Require
 - High p_T lepton (second I: Z, missing E_T : W)
 - isolated photon
- Additional jet veto minimizes NLO effects
- CMS studies:
 - at L=1fb⁻¹, 10fb⁻¹, 100fb⁻¹
 - fast simulation (CMSJET)
 - Wy, Zy
 - Extraction of FF dependent limits on anomalous couplings

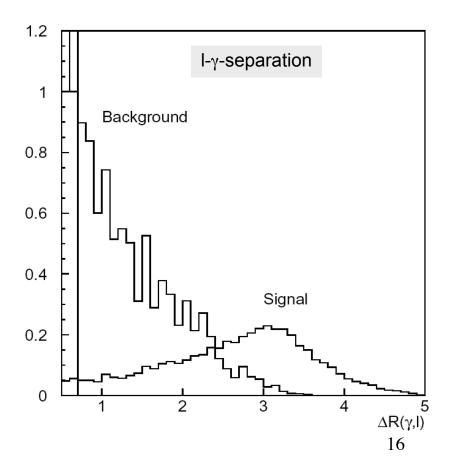
Pseudorapidity Photon/Lepton	$ \eta_{\gamma/\ell} < 2.4$
Transverse Energy Photon	$P_{T,\gamma} > 100 \mathrm{GeV}$
Transverse Energy Lepton	$P_{T,\ell} > 25 \mathrm{GeV}$
Photon-Lepton Separation	$\Delta R_{\ell\gamma} > 0.7$
Missing Energy	$\not\!$
W γ Cluster Transverse Mass	$M_{TC}^{W\gamma} > 90{\rm GeV/c^2}$
$Z\gamma$ Three-body Mass	$M_{\ell\ell\gamma} > 100 {\rm GeV/c^2}$

- Strategy Wγ
 - background
 - W+jets
 - Radiative W
 - bby
 - tty

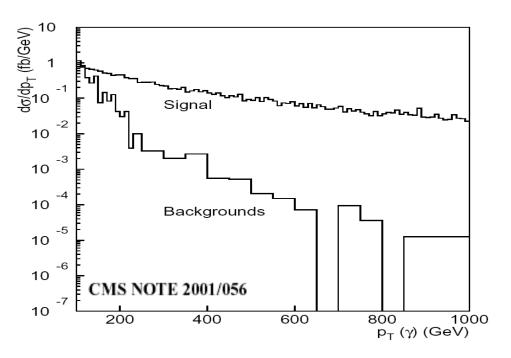

Background	$\sigma_{backgrd}/\sigma_{signal}$
W + jet	500
Radiative W	10000
$bar{b}\gamma$	42
$t\bar{t}\gamma$	0.20
$Z\gamma$	0.04
$W(\tau\nu)\gamma$	0.05

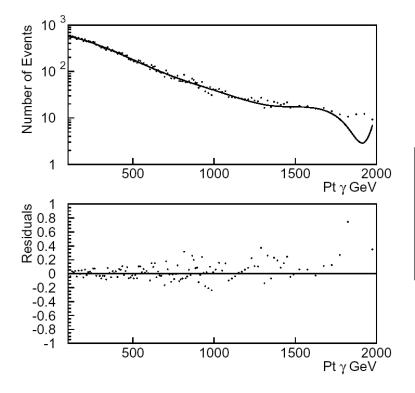
- rejected by
 - isolation cut
 - transverse mass cut
 - $p_T(v)$ cut
 - 2nd jet veto


- Backgrounds of Wγ rejected by:
 - discrete isolation of photon
 - no tracks with $p_T > 2GeV$ within $\Delta R=0.25$
 - rejects W + jets
 - loss 5%, rejection factor 7

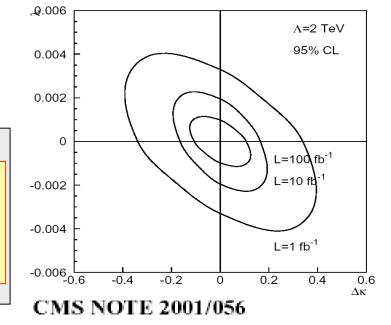

- Backgrounds of Wγ rejected by:
 - transverse mass cut & coliniarity of lepton and photon
 - reduces radiative W events
 - cut on transverse mass
 > 100GeV
 - cut on separation $\Delta R(\gamma, I) > 0.7$

- Backgrounds of Wγ rejected by:
 - cut on $p_T(v)$
 - require $p_T(v) > 50 \text{GeV}$
 - reduces bbγ background




• After all cuts

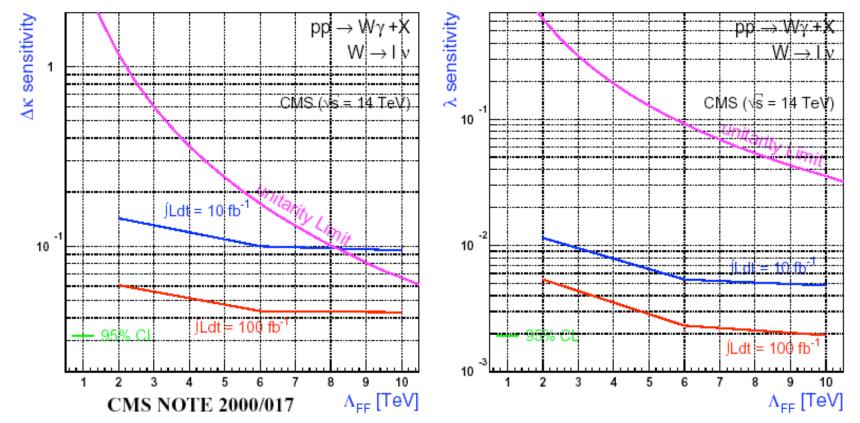
Cut	Signal %	Background %		
		W+jet/Rad.W	t $ar{f t}\gamma$	bb γ
$P_t(\gamma)$	67 ± 0.49	$0.06 {\pm} 0.008$	72 ± 5.33	84±0.22
$P_t(\ell)$	$84{\pm}0.52$	62 ± 0.25	5 ± 1.02	$0.2{\pm}0.001$
$M_T(\gamma, \ell, u)$	$85 {\pm} 0.52$	19 ± 0.14	87±4.2	0.3 ± 0.0115
$\Delta R(\gamma, \ell)$	$95 {\pm} 0.55$	94±0.3	95±4.4	94±0.23
$P_t(\nu)$	$86 {\pm} 0.53$	$60 {\pm} 0.25$	43 ± 2.9	28±0.124
2nd jet	$89{\pm}0.54$	42 ± 0.2	0+0.2	34±0.14
All Cuts	55 ± 0.42	$0.33 {\pm} 0.018$	0+0.2	$0.006 {\pm} 0.0019$

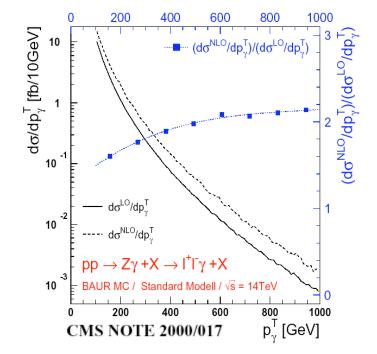


LEP2 com	bined:		
Parameter	68% C.L.	95% C.L.	Limits with
g_1^{Z}	$0.991\substack{+0.022\\-0.021}$	[0.949, 1.034]	L=100fb ⁻¹ improve by two
κ_γ	$0.984\substack{+0.042\\-0.047}$	[0.895, 1.069]	orders of
λ_γ	$-0.016^{+0.021}_{-0.023}$	[-0.059, 0.026]	magnitude for λ_{γ} .

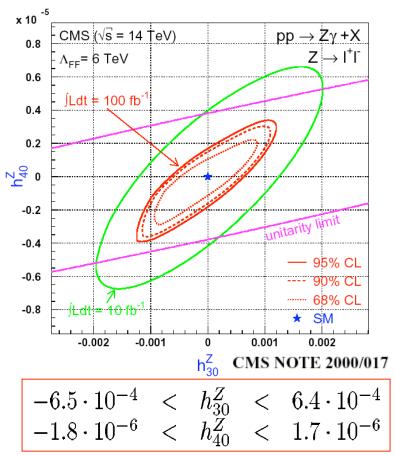
- Strategy Wγ
 - Binned log likelihood fit to $p_T(\gamma)$ distribution.
 - Use parametrised p_T spectrum ($\Delta \kappa$, λ) from BHO NLO generator.

Luminosity	CMS Predictions		TeV2000 Predictions	
(fb^{-1})	$\Delta \kappa$	λ	$\Delta \kappa$	λ
1	± 0.34	± 0.0034	± 0.4	± 0.12
10	± 0.17	± 0.0019	± 0.2	± 0.06
100	± 0.10	± 0.0009	-	-


 $\Lambda_{\rm FF}$ =2TeV


• Λ_{FF} dependence

neutral TGC

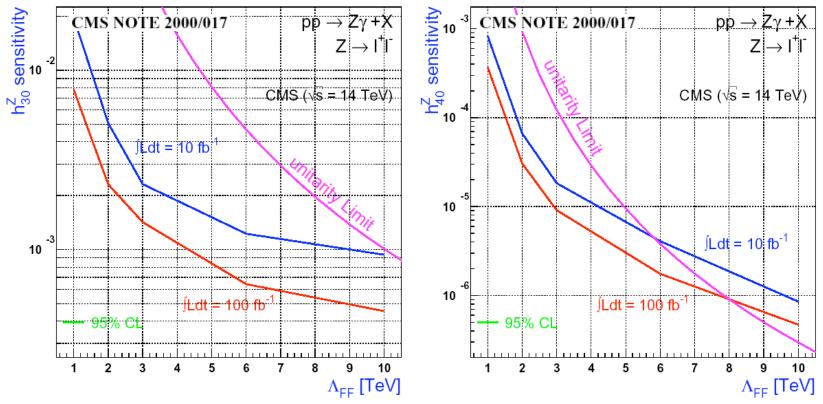


LEP2 combined:

h_3^Z	[-0.20,	+0.07]
h_4^Z	[-0.05,	+0.12]

Limits with L=100fb⁻¹ improve by 3(5) orders of magnitude for $h_3(h_4)$.

- Zγ channel
 - binned log likelihood fit to $p_T(\gamma)$ distribution.
 - NLO taken into account



neutral TGC

• Λ_{FF} dependence

CMS NOTE 2000/017

Summary

- LHC provides with its high \sqrt{s} a good place to look for anomalous couplings.
- Expected to improve the limits significantly for coupling with ∝ Sⁿ, n≥1.
 - 1(2) order of magnitude for $\Delta \kappa$ (λ).
 - 3(5) orders of magnitude for $h_3 (h_4)$.
- Upcoming studies:
 - WZ channel, refined $Z\gamma$, $W\gamma$ analysis.
 - using improved simulation models of CMS.
 - better NLO MC generators.