LHCb sensitivity to γ with $B_s \rightarrow D_s K$

Eduardo Rodrigues, CERN

On behalf of the LHCb Experiment

Magnet

I. Physics case

- CKM matrix
- \blacksquare extraction of γ from $B_s \rightarrow D_s$ K decays
- formalism

II. Event selection

- sources of background
- annual yields and B/S estimations

III. Sensitivity to γ

IV. Summary

Physics at LHC

Vienna, Austria, 13-17 July 2004

-5m

SII

RICH

Physics case

CKM matrix

- > CP violation in the Standard Model
 - → described by 1 complex phase
- 2 unitarity triangles (relations)relevant to B-physics / LHCb

γ from Bs -> D_s K

- > one of several methods
- > theoretically clean
- > not sensitive to new physics
- \rightarrow in fact γ 2χ is measured
 - $\rightarrow \chi$ from B_s -> J/Ψ ϕ : expect $\sigma(\sin 2\chi) \sim 0.06$ in 1 year
- > large samples expected with LHCb, not accessible at B-factories

$$\gamma = - arg(V_{ub})$$

no direct measurement of γ yet available

⇒ 50° < γ < 80° from CKM Fitter group [J. Charles et al., hep-ph/0406184]

Formalism STDTS HEMME

> 2 mass eigenstates

$$|B_{H(L)}\rangle = \frac{1}{\sqrt{p^2 + q^2}}[p|B\rangle + (-)q|\bar{B}\rangle]$$

 \gt time evolution of B_s and c.c flavour eigenstates

$$\Gamma_{B\to f}(t) = \frac{|A_f|^2}{2} e^{-\Gamma_s t} [I_+(t) + I_-(t)]$$

$$\Gamma_{\bar{B}\to f}(t) = \frac{|A_f|^2}{2} \left| \frac{p}{q} \right|^2 e^{-\Gamma_s t} [I_+(t) - I_-(t)]$$

$$\Gamma_{\bar{B}\to \bar{f}}(t) = \frac{|\bar{A}_{\bar{f}}|^2}{2} e^{-\Gamma_s t} [\bar{I}_+(t) + \bar{I}_-(t)]$$

$$\Gamma_{B\to \bar{f}}(t) = \frac{|\bar{A}_{\bar{f}}|^2}{2} \left| \frac{q}{p} \right|^2 e^{-\Gamma_s t} [\bar{I}_+(t) - \bar{I}_-(t)],$$

A_f = instantaneous decay amplitude for B_s -> f

$$\begin{split} &\Gamma_{\rm s} = (\;\Gamma_{\rm H} + \Gamma_{\rm L}\;) \,/ \,2 \\ &\Delta \Gamma_{\rm s} = {\rm B}_{\rm H} \,, \, {\rm B}_{\rm L} {\rm decay \ width \ difference} \\ &\Delta {\rm m}_{\rm s} = {\rm B}_{\rm H} \,, \, {\rm B}_{\rm L} {\rm mass \ difference} \end{split}$$

$$I_{+}(t) = (1 + |\lambda|^{2}) \cosh(\frac{\Delta \Gamma_{s}}{2}t) - 2\Re\lambda \sinh(\frac{\Delta \Gamma_{s}}{2}t)$$
$$I_{-}(t) = (1 - |\lambda|^{2}) \cos(\Delta m_{s}t) - 2\Im\lambda \sin(\Delta m_{s}t)$$

$$\lambda \equiv \frac{q}{p} \frac{A_f}{A_f}$$
$$\bar{\lambda} \equiv \frac{p}{q} \frac{A_{\bar{f}}}{\bar{A}_{\bar{f}}}$$

-5m

Vertex

Case of B_s -> D_s K

 B_s^0 as well a \overline{B}_s^0 can decay to same final state

Interference between 2 tree diagrams via mixing <-> CP asymmetry

- \triangleright interference gives sensitivity to γ 2χ and resolves strong phase difference Δ between 2 diagrams
 - \rightarrow D_s- K⁺ asymmetry phase = Δ + (γ -2 χ) (= arg λ -bar)
 - \rightarrow D_e⁺ K⁻ asymmetry phase = Δ $(\gamma 2\chi)$ (= arg λ)
- > expected that

$$A_f pprox ar{A}_f \ |\lambda| = |ar{\lambda}|$$

$$\begin{vmatrix} A_f \approx \bar{A}_f \\ |\lambda| = |\bar{\lambda}| \end{vmatrix} = \begin{vmatrix} A_{\bar{f}} \\ \bar{A}_{\bar{f}} \end{vmatrix} = \begin{vmatrix} V_{ub}V_{cs} \\ V_{cb}V_{us} \end{vmatrix} \approx 0.5$$

-300

> 2 time-dependent rates (for f and f-bar) used to measure γ - 2χ and Δ

 \rightarrow extraction of γ and Δ from A_f and charge conjugate

Large asymmetry expected

Case of $B_s \rightarrow D_s \pi$

- > needs also to be considered here because:
 - \rightarrow main source of background to D_s K (Br($D_s\pi$) / Br(D_s K) ~ 12)
 - ightharpoonup extraction of γ needs Δm_s , $\Delta \Gamma_s$ and wrong tag fraction from D_s π
- >flavour-specific final state
 - -B_s decays to $D_s^-\pi^+$, but not to $D_s^+\pi^-$
- > one single tree diagram for B_s decay

$$A_{\bar{f}} = \bar{A}_f = 0 \quad \lambda = \bar{\lambda} = 0$$

> flavour asymmetry

$$\mathcal{A}^{flav} = \frac{\Gamma_{\bar{B}\to f} - \Gamma_{B\to f}}{\Gamma_{\bar{B}\to f} + \Gamma_{B\to f}} = -D \cdot \frac{\cos(\Delta m_s t)}{\cosh(\Delta \Gamma_s t)}$$

 \rightarrow possible extraction of Δm_s , $\Delta \Gamma_s$, wrong tag fraction

D = convolution of dilution factor (tagging) and experimental resolution function

vith
$$\left|rac{p}{q}
ight|=1$$

-310

311

Event selection

General – common selection for $B_s \rightarrow D_s$ K and $B_s \rightarrow D_s$ π (small kinematic difference)

- > cuts on quality, IP and momentum for tracks
- > (mass-constrained) vertex fits
- > mass window cuts

D_s reconstruction

- > D_s reconstructed in D_s -> K K π mode
 - → fully reconstructible, high-ish B.R. ~ 4.4%
- > the 3 tracks must satisfy Σp_T > 2.2 GeV
- > vertex with χ^2 < 10
- \rightarrow invariant mass window of +/- 15 MeV around the true D_s-mass

B_s reconstruction

- > bachelor particle identified with RICH PID information crucial for K / π separation, i.e. for D_s K / D_s π separation
- \triangleright B_s vertex obtained from reconstructed D_s and bachelor particle
- > quality criteria applied to D_s and B_s candidates and vertices

only non-common selection for $B_s \rightarrow D_s K$ and $B_s \rightarrow D_s \pi$

Reconstruction plots

 K/π separation using log-likelihood from RICH PID hypotheses

Proper time resolution of B_s

<u>Time-dependent rec. + sel. + trig. efficiency</u>

(not normalised plots)

Annual yields and B/S

B_s Mass resolution

(remaining $D_s\pi$ contamination ~ 10%)

Sources of background

- > pollution from D_s π events
 - \rightarrow Br(D_s π) / Br(D_sK) ~ 12

M4 M5

> b-bbar background

Annual yield - untagged events

Decay	Untagged annual yield	B/S (90% C.L.)
$B_s \rightarrow D_s K$	~ 5.4 k	< 1.0
$B_s \rightarrow D_s \pi$	~ 82 k	0.32 ± 0.10

-5m

Sensitivity studies

Likelihood fit for extraction of γ

- > events generated with parameterized (toy) MC for different settings of CP-parameters: γ 2χ , Δ , Δm_s , $\Delta \Gamma_s/\Gamma_s$
- > full simulation MC info used for acceptance function, decay time uncertainty distribution, background fraction, etc.
- > background events simulated with half the lifetime of the B_s, and with mass distribution observed in full simulation $R_{bkg}(t) = \Gamma e^{-\Gamma t}$
- \rightarrow D_s K and D_s π fitted simultaneously \leftrightarrow maximization of combined likelihood function

$$\mathcal{L}_{B \to f}(\vec{\alpha}) = \prod_{i}^{B_s \to D_s K} \text{Prob}(\tau_{rec}, \Delta \tau_{rec} | \vec{\alpha}, \omega_{tag}) \prod_{i}^{B_s \to D_s \pi} \text{Prob}(\tau_{rec}, \Delta \tau_{rec} | \vec{\alpha}, \omega_{tag})$$

> parameters for fit:

$$\vec{\alpha} = (\Gamma_s, \Delta\Gamma_s, \Delta m_s, \lambda, \overline{\lambda})$$

(per event proper time resolution)

> total likelihood:

$$\mathcal{L}(\vec{\alpha}) = \mathcal{L}_{B \to f}(\vec{\alpha}) \cdot \mathcal{L}_{\overline{B} \to f}(\vec{\alpha}) \cdot \mathcal{L}_{B \to \bar{f}}(\vec{\alpha}) \cdot \mathcal{L}_{\overline{B} \to \bar{f}}(\vec{\alpha})$$

Sensitivity studies

Asymmetries for 5 years of running

Simulated $B_s \rightarrow D_s \pi$ decay rate:

- contains only tagged and non-oscillated decays
- represents 1 year of data taking
- curve = prob. from likelihood maximization

5m

Sensitivity to reconstruction

Sensitivity to B/S ratio

 ϕ_s = -2 χ in the Standard Model

Statistical uncertainties for 1 year of data

Sensitivity to proper time resolution

-500

MARIE CURIE

Sensitivity summary

nominal values

Statistical precision (in degrees) on γ -2 χ after **one** year

$\Delta m_{ m s}$:	15	20	25	30		
$\sigma(\gamma-2\chi)$	12.1	14.2	16.2	18.3		
$\Delta\Gamma_s/\Gamma_s$:	0	0.1	0.2			
$\sigma(\gamma-2\chi)$	14.7	14.2	12.9			
$\gamma - 2\chi$:	55	65	75	85	95	105
$\sigma(\gamma-2\chi)$	14.5	14.2	15.0	15.0	15.1	15.2
$\Delta_{T1/T2}$:	-20	-10	0	10	20	
$\sigma(\gamma-2\chi)$	13.9	14.1	14.2	14.5	14.6	

Statistical precision on Δm_s in ps⁻¹ (**one** year):

Δm_s	15	20	25	30
$\sigma(\Delta m_s)$	0.009	0.011	0.013	0.016

314 315

Conclusions

- ightharpoonup LHCb can exploit several methods of extraction of the γ angle
 - $\rightarrow \gamma$ from B_s -> D_s K method discussed
 - → possibility of cross-checks between methods
 - → different methods have different sensitivity to new physics
 - -> detailed / sensitive description of CKM picture
- > LHCb will provide large statistics for precision measurements
 - \rightarrow ~ 5.4k D_s K events / year with LHCb
 - \rightarrow ~ 80k D_s π events / year with LHCb
 - \rightarrow the B_s is not accessible at B-factories
- > Performance in 1 year
 - \rightarrow $\sigma(\gamma)$ ~ 12-180 for Δm_s ~ 15-30 ps⁻¹
 - \rightarrow 5 σ for Δm_s up to ~ 65 ps⁻¹ , $\sigma(\Delta m_s)$ ~ 0.01 ps⁻¹

-5111

3m

