LHCb Sensitivity to γ with $B^{0} \rightarrow D^{0} K^{*}$ decay

Sandra Amato
LAPE - IF - UFRJ

Physics at LHC

Vienna - Austria - July 13-17, 2004

Outline

- The Physics
the weak phase γ
extraction of γ with $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}$ Decays
- Event Selection at LHCb
- Annual Event Yields and Backgrounds
- Sensitivity to γ

Toy Monte Carlo
Joint Probability Density Function

- Summary

The weak phase γ

The unitarity of CKM matrix gives nine relations
Two of them are relevant for B physics:
$V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}+V_{u d} V_{u b}^{*}=0$
$V_{t s} V_{u s}^{*}+V_{t d} V_{u d}^{*}+V_{t b} V_{u b}^{*}=0$
Using Wolfenstein parametrization

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

There is no direct accurate measurement of γ yet
from CKM fitters
[J. Charles et al. hep-ph/0406186]

$$
50^{\circ}<\gamma<72^{\circ}
$$

Extraction of γ

The strategy is to use $\mathrm{D}^{0} \overline{\mathrm{D}}^{0}$ mixing [M. Gronau and D . Wyler]
\square The modes of interest are $\mathrm{B}^{0} \rightarrow \mathrm{D}_{1} \mathrm{~K}^{* 0}$ and $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}_{1} \overline{\mathrm{~K}}^{* 0}$ [Dunietz] $\mathrm{D}_{1}=\frac{1}{\sqrt{2}}\left(\mathrm{D}^{0}+\overline{\mathrm{D}}^{0}\right)$

- $\mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{+} \pi^{-}$occurs $2 / 3$ of the time
\square sign of K tags the B^{0} flavour - Self tagging mode no need for time-dependent measurements!
$\square \mathrm{D}_{1} \rightarrow \pi^{+} \pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-}$even CP eigenstates
- CP violation in the D system is supposed to be negligible
- New physics in $\mathrm{D}^{0} \overline{\mathrm{D}}^{0}$ mixing could affect the value of γ !

Extraction of γ

$$
\begin{aligned}
& \mathcal{A}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}_{1} \mathrm{~K}^{* 0}\right) \\
& =\frac{1}{\sqrt{2}}\left[\mathcal{A}\left(\mathrm{~B}^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{* 0}\right)+\mathcal{A}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}\right)\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|A_{1}\right|+\left|A_{2}\right| \mathrm{e}^{i(\delta+\gamma)}\right] \\
& \equiv \frac{1}{\sqrt{2}} A_{3} \\
& \mathcal{A}\left(\overline{\mathrm{~B}^{0}} \rightarrow \mathrm{D}_{1} \overline{\mathrm{~K}}^{* 0}\right) \\
& =\frac{1}{\sqrt{2}}\left[\mathcal{A}\left(\overline{\mathrm{~B}^{0}} \rightarrow \mathrm{D}^{0} \overline{\mathrm{~K}}^{* 0}\right)+\mathcal{A}\left(\overline{\mathrm{B}^{0}} \rightarrow \overline{\mathrm{D}}^{0} \overline{\mathrm{~K}}^{* 0}\right)\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|A_{1}\right|+\left|A_{2}\right| \mathrm{e}^{i(\delta-\gamma)}\right] \\
& \equiv \frac{1}{\sqrt{2}} A_{4} .
\end{aligned}
$$

Extraction of γ

$$
\begin{aligned}
& \mathcal{A}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}_{1} \mathrm{~K}^{* 0}\right)=\frac{1}{\sqrt{2}}\left[\mathcal{A}\left(\mathrm{~B}^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{* 0}\right)+\mathcal{A}\left(\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}\right)\right] \\
& A_{3}=\left|A_{1}\right|+\left|A_{2}\right| \mathrm{e}^{i(\delta+\gamma)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}\left(\overline{\mathrm{B}^{0}} \rightarrow \mathrm{D}_{1} \overline{\mathrm{~K}}^{* 0}\right)=\frac{1}{\sqrt{2}}\left[\mathcal{A}\left(\overline{\mathrm{~B}^{0}} \rightarrow \mathrm{D}^{0} \overline{\mathrm{~K}}^{* 0}\right)+\mathcal{A}\left(\overline{\mathrm{B}^{0}} \rightarrow \overline{\mathrm{D}}^{0} \overline{\mathrm{~K}}^{* 0}\right)\right] \\
& A_{4}=\left|A_{1}\right|+\left|A_{2}\right| \mathrm{e}^{i(\delta-\gamma)}
\end{aligned}
$$

$$
\begin{aligned}
& \cos (\delta+\gamma)=\frac{A_{3}^{2}-A_{1}^{2}-A_{2}^{2}}{2 A_{1} A_{2}} \\
& \cos (\delta-\gamma)=\frac{A_{4}^{2}-A_{1}^{2}-A_{2}^{2}}{2 A_{1} A_{2}}
\end{aligned}
$$

$$
B^{0} \text { versus } B^{+}
$$

$$
\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}
$$

$$
\mathrm{B}^{+} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{+}
$$

$$
\frac{\left\|\mathrm{A}\left(B^{+} \rightarrow D^{0} K^{+}\right)\right\|}{\left\|\mathrm{A}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)\right\|} \approx O\left(\frac{1}{10}\right)
$$

Simulation

$\square \mathrm{pp} @ \sqrt{s}=14 \mathrm{TeV}-$ Pythia 6.2.
Includes pileup and spill over with $\mathrm{L}=2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\square decay of unstable particles - QQ package

- interaction with detector - Geant 3
\square reoptimized LHCb geometry and material described in detail

$$
\begin{gathered}
50 \mathrm{k}^{0} \rightarrow \overline{\mathrm{D}}^{0}(\mathrm{~K} \pi) \mathrm{K}^{* 0} \\
50 \mathrm{k} \mathrm{~B}^{0} \rightarrow \mathrm{D}^{0}(\mathrm{KK}) \mathrm{K}^{* 0} \\
30 \mathrm{k} \mathrm{~B}^{0} \rightarrow \mathrm{D}^{0}(\pi \pi) \mathrm{K}^{* 0} \\
10 \mathrm{M} \text { inclusive b} \overline{\mathrm{b}}
\end{gathered}
$$

$\mathrm{K}^{* 0}$ and D^{0} Pre-selection

$\square \mathrm{K}^{* 0} \rightarrow \mathrm{~K}^{ \pm} \pi^{\mp}$: opposite charged K, π using standard LHCb PID
$\square \mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}, \overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$,
$\mathrm{D}_{1} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}$and $\mathrm{D}_{1} \rightarrow \pi^{+} \pi^{-}$
$\square \frac{I P_{K, \pi}}{\sigma}, \frac{I P_{\mathrm{K} * 0}}{\sigma}, \frac{I P_{\mathrm{D}} 0}{\sigma}>1$

- χ^{2} of the vertex fit <30
$\square \mathrm{P}_{\mathrm{T}}\left(\mathrm{D}^{0}, \mathrm{~K}^{* 0}\right)>500 \mathrm{MeV} / \mathrm{c}$
$\square\left|\Delta M_{K \pi}\right|<150 \mathrm{MeV} / \mathrm{c}^{2}$
- $\left|\Delta M_{\mathrm{D}^{0}}\right|<60 \mathrm{MeV} / \mathrm{c}^{2}$
- χ^{2} of the mass constrained vertex fit for $\mathrm{D}^{0}<25$

B^{0} Reconstruction

- 3 different sets of cuts values, one for each D^{0} state.
- Combine $\mathrm{K}^{* 0}$ and D^{0} into a vertex with a χ^{2} cut
\square reconstructed mass $< \pm 25 \mathrm{MeV} / \mathrm{c}^{2}$ of true B^{0} mass.
- Choose a primary vertex as the one
 which gives the smallest IP significance.
signal/background

$$
\sigma=11 \mathrm{MeV} / \mathrm{c}^{2}
$$

Event Yield and B/S ratios

	$\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{0}(\mathrm{~K} \pi) \mathrm{K}^{* 0}$	$\mathrm{~B}^{0} \rightarrow \mathrm{D}_{1}(\mathrm{KK}) \mathrm{K}^{* 0}$	$\mathrm{~B}^{0} \rightarrow \mathrm{D}_{1}(\pi \pi) \mathrm{K}^{* 0}$
Generated events	49500	49000	30000
Selection $\epsilon(4 \pi)$	0.93%	1.20%	1.06%
L0/L1 trigger $\epsilon(4 \pi)$	0.31%	0.35%	0.41%
Annual yield (S)	3000	540	221
B/S (inclusive $b \bar{b})$	$[0.00,0.58]$	$[0.00,2.93]$	$[0.00,8.51]$

No events selected in the 10M $b \bar{b}$ sample
in an enlarged mass window of $\pm 500 \mathrm{MeV} / \mathrm{c}^{2}$
BR for D_{1} modes depends on γ
AY and B / S for D_{1} modes assume $\gamma=65^{\circ}$ and $\delta=0^{\circ}$
[...] indicates 90% CL limits.

$$
\begin{array}{l|l}
\mathrm{BR}_{\mathrm{vis}}\left(\mathrm{~B}^{0} \rightarrow \overline{\mathrm{D}}^{0}\left(\mathrm{~K}^{+} \pi^{-}\right) \mathrm{K}^{* 0}\right) & (1.2 \pm 0.3) \times 10^{-6} \\
\mathrm{BR}_{\mathrm{vis}}\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}^{0}(\mathrm{KK}) \mathrm{K}^{* 0}\right) & (0.13 \pm 0.03) \times 10^{-6} \\
\mathrm{BR}_{\mathrm{vis}}\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}^{0}\left(\pi^{+} \pi^{-}\right) \mathrm{K}^{* 0}\right) & (0.046 \pm 0.012) \times 10^{-6}
\end{array}
$$

Calculation of Amplitudes

$$
\left.\begin{array}{c}
A_{1}=A\left(\mathrm{~B}^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{* 0}\right)=\overline{\mathrm{A}}_{1} \\
A_{2}=A\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}\right)=e^{i 2 \gamma} \bar{A}_{2} \\
A_{3}=\sqrt{2} A\left(\mathrm{~B}^{0} \rightarrow \mathrm{D}_{1} \mathrm{~K}^{* 0}\right)=\mathrm{A}_{1}+\mathrm{A}_{2} \mathrm{e}^{\mathrm{i}(\delta+\gamma)} \\
A_{4}=\sqrt{2} A\left(\overline{\mathrm{~B}}^{0} \rightarrow \mathrm{D}_{1} \overline{\mathrm{~K}}^{* 0}\right)=\mathrm{A}_{1}+\mathrm{A}_{2} \mathrm{e}^{\mathrm{i}(\delta-\gamma)}
\end{array}\right) .
$$

A_{3} and A_{4} are obtained with modes
$\mathrm{B}^{0} \rightarrow \mathrm{D}_{1}\left(\mathrm{~K}^{+} \mathrm{K}^{-}\right) \mathrm{K}^{* 0}$ and
$\mathrm{B}^{0} \rightarrow \mathrm{D}_{1}\left(\pi^{+} \pi^{-}\right) \mathrm{K}^{* 0}$.

Fast Monte Carlo Approach

A Gaussian random number is added to each amplitude according to its respective uncertainty.

$$
\gamma=\frac{1}{2}\left\{\cos ^{-1}\left(\frac{A_{3}^{2}-A_{1}^{2}-A_{2}^{2}}{2 A_{1} A_{2}}\right)-\cos ^{-1}\left(\frac{A_{4}^{2}-A_{1}^{2}-A_{2}^{2}}{2 A_{1} A_{2}}\right)\right\}
$$

A Gaussian fit is performed to the γ distribution.
Uncertainty obtained from the fit.
When $|\cos (\gamma)|>1$ the event is removed. This bias is
\square small for the values of γ and δ in the intervals:
$55^{\circ}<\gamma<105^{\circ}$ and $-20^{\circ}<\delta<20^{\circ}$.
\square large for larger values of δ or when $\delta=\gamma$

Fast Monte Carlo Approach

Joint Probability Density Function Approach

The probability density function of γ and δ can be obtained from the combined χ^{2} function of the four independent sides of the triangles.

$$
\chi^{2}\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=\sum_{i=1}^{4}\left(\frac{A_{i}-\bar{A}_{i}}{\sigma\left(A_{i}\right)}\right)^{2},
$$

A_{3} and A_{4} can be expressed in terms of γ and δ
$A_{3}^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (\delta+\gamma)$,
$A_{4}^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (\delta-\gamma)$.

$$
\mathcal{J}(\gamma, \delta)=F \int d A_{1} \int d A_{2} \mathrm{e}^{-\frac{1}{2} \chi^{2}\left(A_{1}, A_{2}, \gamma, \delta\right)}
$$

integration performed in the interval $A_{1,2}-7 \sigma\left(A_{1,2}\right)$ to $A_{1,2}+7 \sigma\left(A_{1,2}\right)$

JPDF Results

Summary

\square We have presented a way of extracting γ using $\mathrm{D}^{0} \overline{\mathrm{D}}^{0}$ mixing with modes $\mathrm{B}^{0} \rightarrow \mathrm{D}_{1} \mathrm{~K}^{* 0}$ and $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}_{1} \overline{\mathrm{~K}}^{* 0}$

- The D_{1} has been reconstructed through (KK) and $(\pi \pi)$ modes.
- LHCb can well reconstruct it with B^{0} mass resolution of $11 \mathrm{MeV} / \mathrm{c}^{2}$
\square An annual yield of $\approx 3000,540$ and 221 for $\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{0}(\mathrm{~K} \pi) \mathrm{K}^{* 0}$, $\mathrm{B}^{0} \rightarrow \mathrm{D}_{1}(\mathrm{KK}) \mathrm{K}^{* 0}$ and $\mathrm{B}^{0} \rightarrow \mathrm{D}_{1}(\pi \pi) \mathrm{K}^{* 0}$, respectively
\square Two approachs have been used to measure the sensitivity.
- Both give compatible results in the range $55^{\circ}<\gamma<105^{\circ}$ and $-20^{\circ}<\delta<20^{\circ}$
\square As an example, the uncertainty on γ is estimated to be of the order of 4° after 5 years of data taking for $\gamma=65^{\circ}$ and $\delta=0^{\circ}$.

