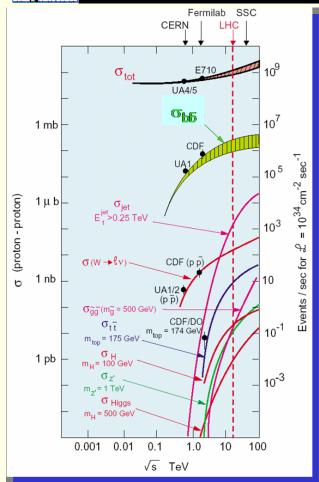
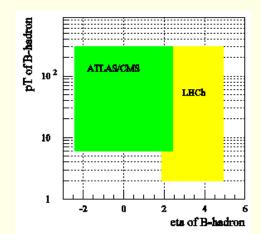


ATLAS and CMS B-Physics Prospects


V. M. Ghete Institute for Experimental Physics University of Innsbruck, Austria

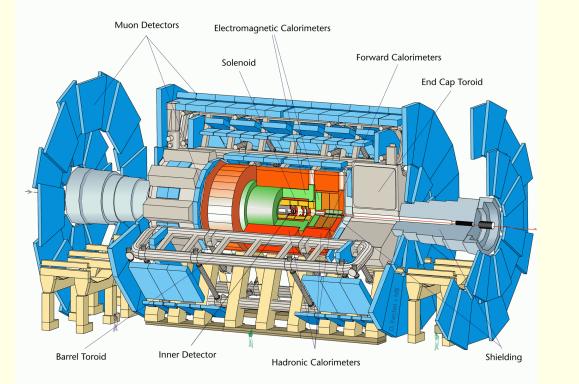
on behalf of ATLAS and CMS Collaborations

Introduction



b production at LHC $\sigma_{\rm total} = 100 \text{ mb}$ $\sigma_{\rm inelastic} = 80 \text{ mb}$ $\sigma_{\rm b\bar{b}} = 500 \,\mu{\rm b}$

- Access to B^0_s and Λ^0_b decays
- Higher statistics and better signalto-noise ratio than at Tevatron
- ATLAS/CMS: complementary to LHCb



ATLAS/CMS	LHCb
Central detectors	Forward detector
$ \eta < 2.5$, $p_{ m T} > 10~{ m GeV}$	$1.9 < \eta < 4.9$, $p_{\mathrm{T}} > 2~\mathrm{GeV}$
$\sigma = 100 \ \mu \mathrm{b}$	$\sigma = 230 \ \mu \mathrm{b}$
$L = 1 \div 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	$L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
$10^{34}~{ m cm}^{-2}{ m s}^{-1}$ rare decays	
B-physics LVL1 trigger: lepton	lepton and hadronic trigger
Statistics: 1 y @ 10^{33} cm ⁻² s ⁻¹	1 y @ $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
$2.6 imes 10^6$ rec. 'physics' events	$3.4 imes10^6$ 'physics' events
dominated by $bb ightarrow J/\psi$	$1.7 imes 10^6~bb ightarrow J/\psi$
$< 10^5$ hadronic	$1.7 imes 10^6$ hadronic

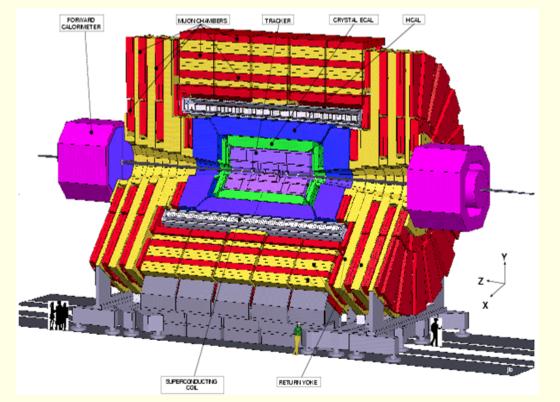
ATLAS Detector

Staged detector: \implies 'initial layout'

0			
Initial/Complete	barrel	endcaps	
InDet Pixel SCT	2/3 4/4	2/3 9/9	
InDet TRT	axial tubes	C-Wheels: no/yes	
Muon: endcaps	EEL/EES MDT and 1/2 of CSC		
HLT system	reduced computing resources		

Inner detector: (InDet)

- discrete semiconductor pixel and strip detectors
- transition radiation tracker: straw-tubes interspersed with a radiator $\implies e/\pi$ separation
- inside solenoid: 2 T magn. field Calorimetry:
 - highly granular LAr EM calorimeter: $|\eta| < 3.2$
 - hadron calorimeter: $|\eta| < 4.9$ barrel: scintillator-tile, endcaps and forward: LAr


Muon spectrometer:

- air-core toroid system on average $\sim 0.5~{\rm T}.$
- MDTs & CSCs; RPCs & TGCs

CMS Detector

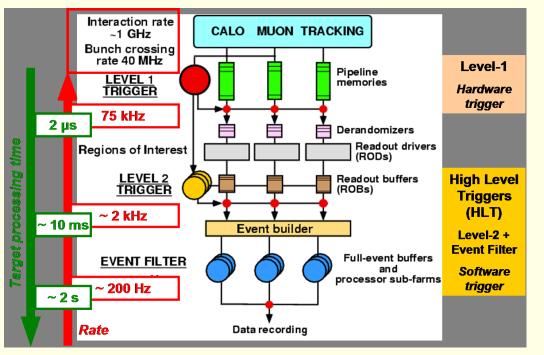
Staged (•) and descoped (\star) items:

- muon endcap ME4, RE4, RE1 \div 3/1
- start with 50% HLT Farm: L1 rate = 50 kHz Muon sp
- $\star\,$ HCAL: reduced no. of longitudinal samplings
- $\star~$ ME1/1a (3 channels in one)

Tracker

- pixel detector: 3 barrel layers, 2 disks/E
- silicon strip detector: inner barrel TIB: 4 layers, inner endcaps TID: each 3 discs; outer barrel TOB: 6 layers; endcaps TEC: each 9 disks.
- inside the solenoid: 4 T magnetic field. Calorimetry: inside the solenoid
 - high resolution lead-tungstate crystal EM calorimeter: $|\eta| < 3$
 - endcap preshower: $\pi^0 \gamma$ separation
 - hadron calorimeter: $|\eta| < 5$
- 50 kHz Muon spectrometer:
 - superconducting solenoid, 4 T.
 - barrel: DTs and RPCs
 - endcaps: CSCs and RPCs.

Classical B-physics menu contains:


- CP violation studies:
 - $-\sin 2\beta$: $B^0_d \to J/\psi K^0_S$, with $J/\psi \to \mu^+\mu^-$ or $J/\psi \to e^+e^-$
 - α angle: $B^0_d \rightarrow \pi \pi$
 - $\Delta\Gamma_s$, Γ_s , ϕ_s : $B^0_s \to J/\psi\phi$, $B^0_s \to J/\psi\eta$
- B^0_s oscillation studies: $B^0_s \to D_s \pi$, $B^0_s \to D_s a_1$ with $D_s \to \phi \pi$
- Exclusive rare decays:
 - purely muonic decays: $B_{d,s} \rightarrow \mu^+ \mu^-$
 - semi-muonic decays: $B_{d,s} \rightarrow \mu^+ \mu^- X$ where $X = K^*, \ \rho^0, \ \phi^0, \ \dots$
 - radiative decays: $B_{d,s} \to X\gamma$ where $X = K^{\star}, \ \rho^0, \ \phi^0, \ \dots$
- B_c studies
- B production, $b\bar{b}$ correlation
- b baryon physics, polarization

... but B-physics is and will remain for the next five years a very dynamic domain, both theoretically and experimentally (BaBar, Belle, CDF, D0,...), therefore new channels may become interesting.

Note: results presented here were obtained with different geometries, software releases and trigger conditions.

ATLAS Trigger System

Trigger tasks:

- reduce the total event rate to ~ 200 Hz, most dedicated to high- $p_{\rm T}$ physics
- maximize coverage of discovery physics
- be open to new signatures
- use inclusive triggers as much as possible

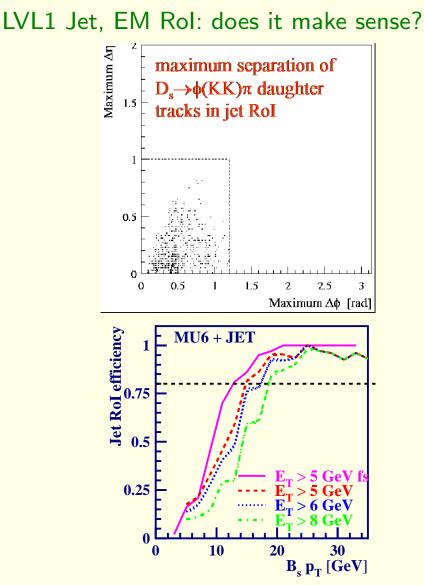
Level-1 trigger (LVL1)

- selection: based on reducedgranularity information from calo and muon trigger chambers
- provides Region of Interest (η , ϕ of LVL1 signature, p_T and energy sum of candidate objects) to LVL2

Level-2 trigger (LVL2)

- has access to all event data, with full precision and granularity
- uses LVL1 Rols to access selectively data, transfer minimum required data
- emphasis: fast rejection & algorithms Event Filter (EF)
 - refines LVL2 selection, using LVL2 Rols and sophisticated algorithms
 - can access detailed alignment and calibration data

B-physics trigger 'classical' scenario:


- LVL1: single muon, $p_{\rm T} > 6~{\rm GeV}$, $|\eta| < 2.4$.
- LVL2: μ confirmation within LVL1 Rol, ID track 'full scan'

Revised strategy necessary due to:

- tight funding constraints
- doubled luminosity target for LHC start-up $(2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1})$
- detector changes, staged detector items, significant HLT resource deferrals

B-physics trigger alternatives to reduce computing resources:

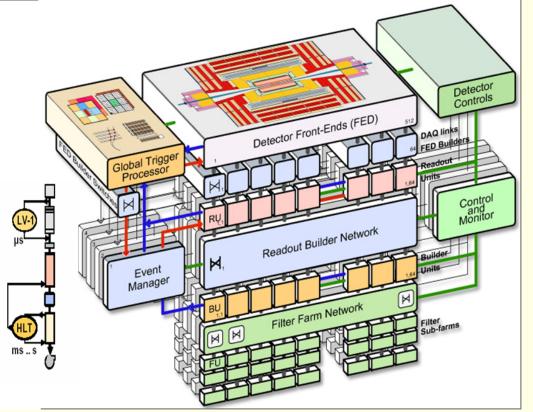
- require at LVL1, in addition to single μ trigger, a second muon, a JET or an EM Rol, reconstruct at LVL2/EF within Rol
- re-analyze thresholds and use a flexible trigger strategy, depending on luminosity.

LVL1 Jet Rol efficiency: reasonable. Number of Rols: not fully validated.

Trigger types:

- di-muon trigger: LVL1 and LVL2
 - selection for $J/\psi(\mu^+\mu^-)$, $B \to \mu^+\mu^-(X)$, etc.
- hadronic final states triggers + single muon:
 - LVL1 single muon
 - Rol-guided reconstruction in ID at LVL2, Rol from LVL1 Jet trigger
 - alternative: full-scan in ID at LVL2
 - selection for hadronic channels: $B^0_d \to \pi \pi$, $B^0_s \to D_s \pi$, etc
- electron-muons final states triggers + single muon:
 - LVL1 single muon
 - Rol-guided reconstruction in TRT at LVL2, Rol from LVL1 EM trigger
 - alternative: full-scan in TRT at LVL2
 - selection for electrons, e.g. $J/\psi \rightarrow e^+e^-$

Flexible strategy adapted to limited bandwidth:


- Start with a di-muon trigger for higher luminosities LHC fills.
- Add further triggers (hadronic final states, final states with electrons and muons):
 - in the beam coast
 - for the low luminosity fills.
- Always fill the available bandwidth in the HLT system.

Estimated trigger rates: $@~2 imes 10^{33}$				
LVL1	EF			
200 Hz	10 Hz			
	0.1×10^{33}			
100 Hz	5 Hz			
60 Hz	9 Hz			
20 Hz	3 Hz			
	LVL1 200 Hz 100 Hz 60 Hz			

CMS Trigger System

Trigger tasks:

- reduce the event rate to $\mathcal{O}(100)~{\rm Hz}$
- cover widest possible range of discovery physics

Main characteristics:

- LVL2, LVL3 merged in a single processor farm
- 8 slices, each slice allow 12.5 kHz

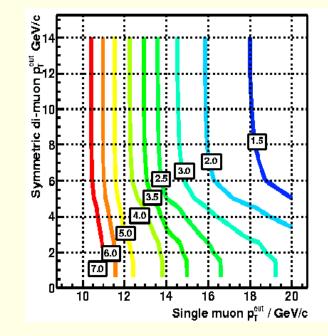
Level-1 trigger (LVL1)

- reduce event rate from 40 MHz to 100 kHz (complete) or 50 kHz (DAQ staged). Total processing time: 3 μ s.
- selection: based on coarse information from calo and muon detector

High Level Trigger (HLT)

- output event rate: $\sim 100~{\rm Hz}$ total processing time up to 1 s.
- has access to all event data, with full precision and granularity
- can use the offline software
- to improve trigger performance, can also use HLT tracking algorithms
 - regional reconstruction: LVL1 seeded
 - partial reconstruction
 - conditional reconstruction

B-physics selection:


- LVL1: single muon, di-muon. Thresholds determined by allocated rate.
- HLT: single muon, di-muon.

Alternatives to reduce resources

- reconstruct at HLT some exclusive B decays around the muon(s).
 - use LVL1-seeded regional reconstruction for fast rejection
 - partial reconstruction, combined with $p_{\rm T}$ cuts (conditional reconstruction)
- possibly use at LVL1 low- $p_{\rm T}$ muon + low- $E_{\rm T}$ Jet for hadronic channels. Example:

Muon $p_{\rm T}$	$B_s^0 \rightarrow D_s \pi$ trigger rates in kHz: HLT(LVL1)		
(GeV/c)	$E_{\rm T} > 0 {\rm GeV}$	$E_{\rm T}>20~{\rm GeV}$	$E_{\rm T} > 30 ~{\rm GeV}$
6	0.16 (26.0)	0.082(8.5)	0.055(3.6)
10	0.037(6.4)	0.021(2.5)	0.014(1.3)
14	0.017(3.2)	0.010(1.3)	0.008(0.7)

Cumulative LVL1 (1 μ , 2 μ) rate:

$$= 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$
, $|\eta^{\text{muon}}| < 2.1$

10 ATLAS/CMS B-Physics Prospects

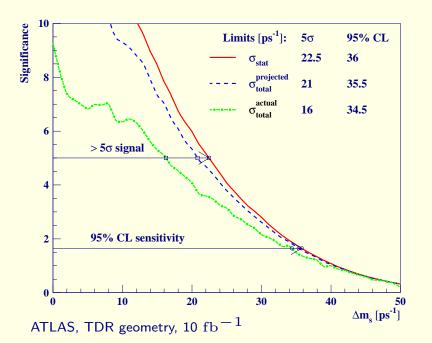
Measurement in the channel: $B_d^0 \rightarrow J/\psi K_S^0$.

Analysis: maximum likelihood fit with proper time resolution, tag probability, wrong tag fraction, background composition as input.

direct CP violation term $\sim~\cos(\Delta m)$ neglected here, foreseen to be added.

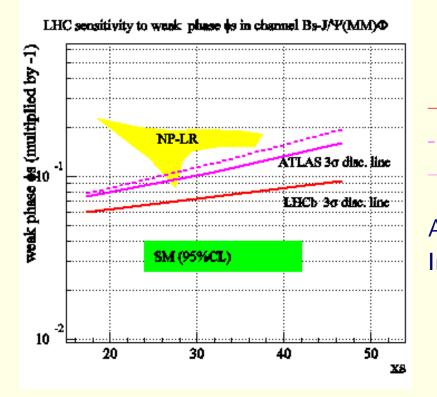
30 fb ⁻¹	$J/\psi(\mu 6\mu 3)$	$J/\psi(\mu 6\mu 5)$	$J/\psi(e1e1)$
Reconstructed events	490k	250k	15k
Signal/Background	28	32	16
$\sigma_{ m stat}(\sin 2eta)$			
Lepton tag	0.023	0.030	0.018
Jet-charge tag	0.015	0.019	-
Combined tag	0.0126	0.016	0.018
$\sigma_{ m stat}(\sin 2eta)$ combined channed	els, combined t	ag	
$J/\psi(\mu 6\mu 3)+J/\psi(e1e1)$		0.010	
$J/\psi(\mu 6\mu 5)+J/\psi(e1e1)$		0.012	
$J/\psi(\mu 6\mu 5)$		0.016	
$\sigma_{ m syst}(\sin 2\beta)$		0.005	

Numbers correspond to TDR geometry


 B^0_s oscillations in channels $B^0_s o D_s \pi$, $B^0_s o D_s a_1$

- Performance: strongly dependent on allocated trigger rate (LVL1 muon threshold).
- ATLAS: sensitivity to Δm_s up to 36 ps⁻¹ with 10 fb⁻¹ and LVL1 muon threshold $p_{\rm T} = 6$ GeV.
- CMS: new evaluation, very restrictive trigger (1 kHz allocated at LVL1, 5 Hz @HLT, 1 year): sensitivity to Δm_s up to 20 ps⁻¹.
- SM allowed range $14.3 < \Delta m_s < 26 \text{ ps}^{-1}$.

 $\Delta\Gamma_s$, Γ_s , ϕ_s in channels: $B^0_s \to J/\psi\phi$, $B^0_s \to J/\psi\eta$

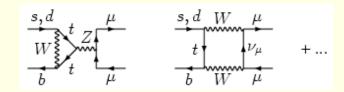

• Angular analyses of $B_s^0 \to J/\psi\phi$: determine $\Delta\Gamma_s$, Γ_s , ϕ_s simultaneously with $A_{\parallel}(t=0)$, $A_{\perp}(t=0)$, $A_0(t=0)$, δ_1 , δ_2 from a maximum-likelihood fit.

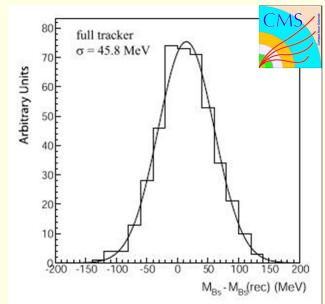
$A_{\parallel}(t=0), \ A_{\perp}(t=0), \ A_0(t=0), \ \delta_1, \ \delta_2$ from a maximum-likelihood fit.				
$30 \ \mathrm{fb}^{-1}$	$\sigma(\Delta\Gamma_s)/\Delta\Gamma_s$	$-\phi_s$	$\sigma(\phi_s)(x_s = 20 \div 40)$	
ATLAS $(J/\psi\phi)$	12% (stat)	$0.08 \div 0.15 \ (x_s = 20 \div 40)$	$0.03 \div 0.05$	
ATLAS $(J/\psi\eta)$		$0.27 \div 0.31 \ (x_s = 20 \div 30)$		
CMS $(J/\psi\phi)$	$8 \div 15\%$ (stat)	$0.04 \div 0.04 \ (x_s = 20 \div 40)$	$0.02 \div 0.04$	

- Standard Model region (updated 2003)
- Left-Right Symmetric Models (NP-LR) (2000)
- LHCb (5 y, performance parameters 2000)
- - ATLAS Initial Layout
- ATLAS Complete Layout

ATLAS sensitive to new physics, even with the Initial Layout.

- Physics potential of both ATLAS and CMS not yet fully investigated studies underway for new tagging and trigger optimization.
- Theoretical model predictions also to be updated soon.


Rare decays:

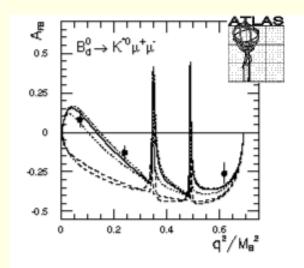

- transitions at loop level in SM, FCNC B decays $\bar{b} \rightarrow \bar{s}$ or $\bar{b} \rightarrow \bar{d} \Longrightarrow$ small exclusive BRs $< 10^{-5}$
- sensitive probes for new physics

 $B_{d,s} \to \mu^+ \mu^-$

- theoretically clean channel: involves only f_{B_q} BR = $3.5 \times 10^{-9} \ (B_s^0)$, $1.5 \times 10^{-10} (B_d^0)$ in SM
- expect large contributions from new physics (SUSY)
- experimentally clean, but challenging
- triggered at low and high luminosity (di-muon trigger) Expected number of events (SM BRs, 1y 10^{34} cm⁻²s⁻¹, non-updated trigger)

	Signal	Signal	Bkgd
$100~{ m fb}^{-1}$	$B_s \to \mu^+ \mu^-$	$B_d \to \mu^+ \mu^-$	
ATLAS	92	14	660
CMS	26	4	< 6.4

Difference ATLAS/CMS for background rejection: no CAL muon isolation implemented yet in ATLAS ATLAS/CMS muon resolutions? ATLAS/CMS re-evaluation of background



- Theoretically difficult: involves hadron form factors and long-distance contributions.
- In SM: $B_d \to K^{\star 0} \mu^+ \mu^-$ sensitive to $|V_{ts}|$ and $N(B_d \to \rho^0 \mu^+ \mu^-)/N(B_d \to K^{\star 0} \mu^+ \mu^-) \sim |V_{td}|^2/|V_{ts}|^2$
- Shape of muon forward-backward asymmetry sensitive to new physics (MSSM) via non-standard values of Wilson coefficients.

Number of events (ATLAS, 30 fb^{-1} , TDR geometry)

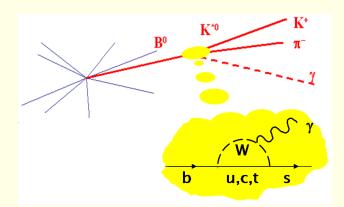
Channel	BR	Signal	Bkgd
$B_d \to K^{\star 0} \mu^+ \mu^-$	1.5×10^{-6}	1995	290
$B_d o ho^0 \mu^+ \mu^-$	10^{-7}	222	950
$B_d \to \phi^0 \mu^+ \mu^-$	10^{-6}	411	140

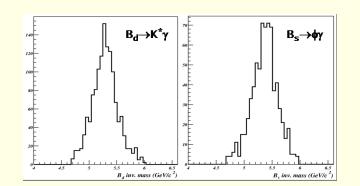
$$---- SM$$

$$\cdots MSSM C_{7_{\gamma}} > 0$$

$$---- MSSM C_{7_{\gamma}} < 0$$

$$\bullet \text{ mean } A_{FB} \text{ in three}$$
experimental q^2/M_B^2 regions


$$A_{FB}(s) = \frac{1}{d\Gamma/ds} \int_0^1 \frac{d^2\Gamma}{dsd\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d^2\Gamma}{dsd\cos(\theta)} d\cos\theta$$


 θ : angle between μ^+ and B-meson direction in the dilepton rest frame In the lowest mass region: sufficient accuracy to separate SM and MSSM if $C_{7\gamma} < 0$.

- Theoretically difficult: involves hadron form factors and long-distance contributions.
- Sensitive to new physics through BRs enhancements
- CP asymmetries in $B\to\rho\gamma$ decays
- Isospin violation in $B \to K^{\star 0} \gamma$ and $B \to \rho \gamma$ decays.

ATLAS studies: $B_d \to K^{\star 0} \gamma$, $B_s \to \phi \gamma$

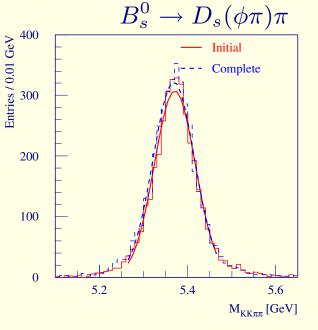
Expected number of events:

20 fb⁻¹(1y
$$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$
):

non-optimized offline cuts;

numbers depend also on trigger strategy, not validated

Channel	BR	Signal	S/B
$B_d \to K^{\star 0} \gamma$	4.3×10^{-5}	[4200, 8500]	> 0.01
$B_s o \phi \gamma$	4.3×10^{-5}	[2500, 3200]	> 0.04

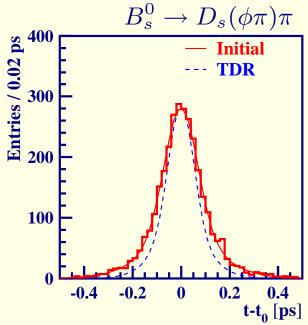

Inner Detector geometry evolution: most B-physics to be done with 'Initial Layout'

InDet Layout	Physics TDR	Initial	Complete
Radius of b-layer	$4.3~\mathrm{cm}$	$5.05~\mathrm{cm}$	$5.05~{ m cm}$
Radius of middle pixel layer	$11.0~\mathrm{cm}$	staged	$8.85~\mathrm{cm}$
Radius of last pixel layer	$14.2~\mathrm{cm}$	$12.25~\mathrm{cm}$	$12.25~\mathrm{cm}$
Pitch Z in b-layer	$300~\mu{ m m}$	$400 \mu { m m}$	$400~\mu{ m m}$
Number of Pixel disks	4	2	3
Endcap TRT 'C' wheels	present	staged	present

B-physics performance with initial / complete layout

Mass resolution

	Mass resolution, single Gaussian fit			
Channel	TDR	Initial	Complete	
$B_s^0 \to D_s(\phi \pi) \pi$	42 MeV	46 MeV	47 MeV	
$B o \mu^+ \mu^-$	68 MeV	78 MeV	80 MeV	
$B^0_d o J/\psi K^0_S$	19 MeV	21 MeV	22 MeV	
$B_s^0 o J/\psi \phi$	15 MeV	17 MeV	17 MeV	


B-physics performance with initial / complete layout: other quantities

- proper time resolution in B_s^0 decays:
 - initial and complete layouts have approx.
 the same resolution
 - core resolution: TDR layout ~ 52 fs, initial layout > 60 fs
 - cuts optimization: $N_{\rm events}$ vs resolution
- number of reconstructed events:
 - $-5 \div 10\%$ events lost for initial layout w.r.t. complete layout

Preliminary conclusion: B-physics track-related performance

- The performance of the detector is not deteriorated significantly for the initial layout w.r.t. the complete layout.
- but ... assuming no additional dead cells and mis-alignment in the InDet
- and ... more elaborated track error calculation needed in the reconstruction.

HLT staging has the most significant effect on B-physics

- ATLAS and CMS are capable to pursue an extensive B-physics program:
 - main emphasis on underlaying mechanisms of CP-violation and evidence for new physics: precise measurement of β angle, new physics in $B_s^0 \rightarrow J/\psi\phi$.
 - precision measurements of B_s^0 properties: sensitivity on Δm_s beyond SM expectation, width difference $\Delta \Gamma_s$, width Γ_s .
 - rare decays measurements $B_s \to \mu^+ \mu^-(X)$ extended to nominal LHC luminosity $10^{34} \text{ cm}^{-2} \text{s}^{-1}$; able to measure $B_s \to \mu^+ \mu^-$ branching ratio of $\mathcal{O}(10^{-9})$ in SM.
 - precision measurements of B_c properties
 - QCD tests with measurements of b production and $b\bar{b}$ correlations
- B-physics performance will strongly dependent on:
 - allocated B-physics trigger rate: di-muon trigger safe, hadronic triggers mostly affected
 - LHC operating conditions: lower luminosity favors B-physics.
- Concentrated effort on B-physics trigger studies for both ATLAS and CMS. New strategies try to minimize effect of large resources deferrals in HLT systems.
- More details and better, more consistent prospect evaluation will be available in the next few years.