

B_d and B_s Mixing at LHCb

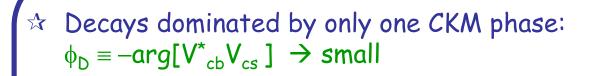
On behalf of the LHCb Collaboration

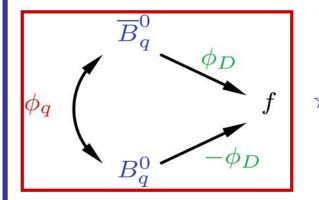
Benjamin Carron LPHE - EPF Lausanne


Physics at the LHC, Vienna July 15th, 2004

- ☆ CP Violation
- \Rightarrow B-B Asymmetry
- \Rightarrow LHCb simulation
- ☆ Oscillations and Phases
- Summary

The CKM Matrix: Unitarity Triangles





$\overline{b} \rightarrow \overline{c}c\overline{s}$ Transitions: Decays to CP eigenstates

 V_{cs}

⇒ Due to the mixing, the flavour states $B_q^0-\overline{B_q}^0$ can either remain unchanged and decay to f, or oscillate into each other, ...

 B_q^0

b

☆ "Mixing-induced" ČR arises from a phase difference (ϕ_{CKM}) between the weak mixing phase $\phi_q \equiv 2 \arg[V_{tq}^*V_{tb}]$ and the tree phase $\phi_D \equiv -\arg[V_{cb}^*V_{cs}]$ (q=d,s)

$$\begin{split} \hline \varphi_{\mathcal{C}\mathsf{K}\mathsf{M}} &= \varphi_q - 2 \ \varphi_{\mathsf{D}} \approx \varphi_q \neq \mathbf{0}, \ \pi \\ \hline b & & \overline{t} & V_{tg}^* & \overline{q} \\ \hline B_q^0 & & & & \\ q & & & & \\ \hline V_{tq}^* & & V_{tb} & & \\ \hline V_{tq}^* & & V_{tb} & & \\ \hline V_{cb}^* & & & \\ \hline V_{cb} & & \\ \hline V_{cb} & & \\ \hline \end{array} \end{split}$$

New Physics

 \tilde{g}

 \tilde{s}

 $\overset{|}{\ast}^{\tilde{b}}$

 \tilde{s}

 \tilde{q}

- ☆ B_d -system: $\phi_d = 2 \arg[V_{td}^*V_{tb}]$ well measured (sin(ϕ_d) = 0.7)
- ☆ B_s -system: $\phi_s = 2 \arg[V_{ts}^*V_{tb}]$ not measured yet $(sin(\phi_s^{SM}) \sim -0.04)$
 - Cannot be measured at B-factories working at Y(4s)
 - \rightarrow "Highway" towards New Physics
- * SUSY contribution (mainly induced by gluino exchange) to the $B_s^0 - \overline{B_s^0}$ transitions could drastically change the SM prediction (P. Ball et al., hep-ph/0311361) \overline{B}_s^0

- $\Delta m_s = (10 10^4) \text{ ps}^{-1}$ (SM: $\Delta m_s = 20 \text{ ps}^{-1}$)
- Up-type singlets models (quark mixing matrix (3+n_u)x3)
 (J.A. Aguilar-Saavedra et al., hep-ph/0406151)
 - $sin(\phi_s) \sim \lambda \sim 0.22$

 B_s^0

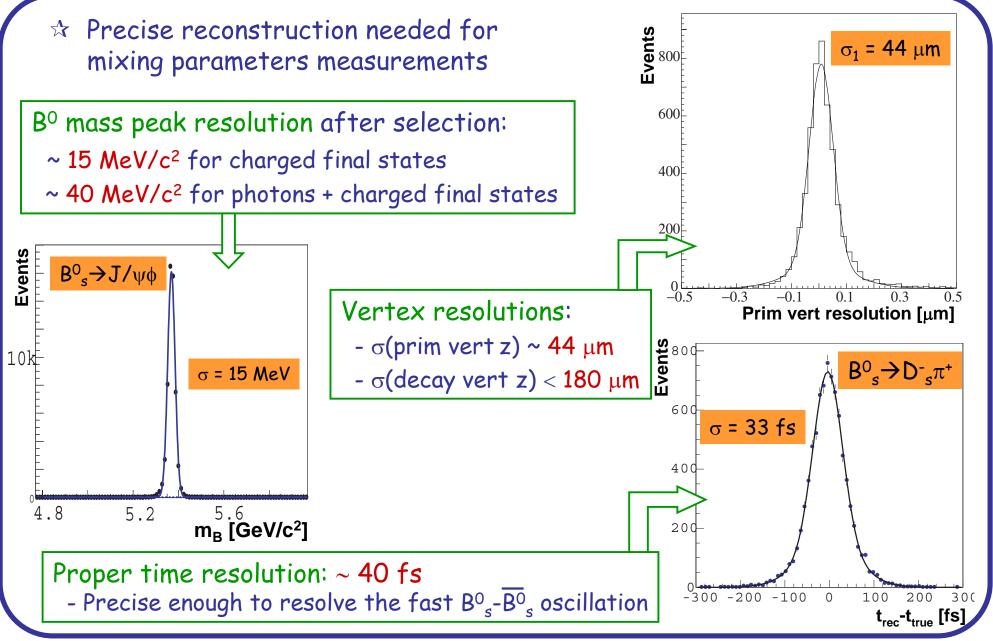
CP measurements in LHCb

The study of CP violation implies measurement of time-dependent decay asymmetry between the B⁰ and the B⁰ into CP eigenstates

$$\mathcal{A}_{CP}^{obs}(t) \equiv \frac{R\left(\overline{B^0}(t) \to f_{CP}\right) - R\left(B^0(t) \to f_{CP}\right)}{R\left(B^0(t) \to f_{CP}\right) + R\left(\overline{B^0}(t) \to f_{CP}\right)}$$

t : Proper time R : Measured decay rate $f_{CP} = \overline{f}_{CP}$

☆ Tagging ⇒ dilution of the theoretical asymmetry by a factor D = (1-2∞)
(In case of perfect resolution and no bkg) $\mathcal{A}_{CP}^{obs}(t) = D \cdot \mathcal{A}_{CP}^{th}(t)$


To estimate LHCb performances to the tagging and physics parameters \rightarrow need of a full MC simulation:

- Generation of minimum bias p-p, incl. pile-up and spill-over (\sqrt{s} = 14TeV) \rightarrow Pythia 6.2
- Decay of unstable particles $\rightarrow QQ$
- Tracking and detector response \rightarrow Geant 3

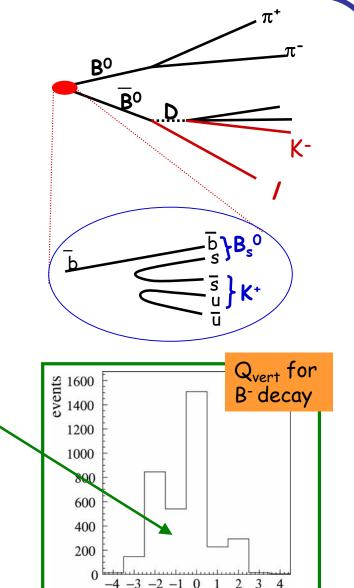
Reconstruction at LHCb

Physics at the LHC, Vienna

Flavour Tagging

цнср

Knowledge of B initial flavour is essential for any & measurements

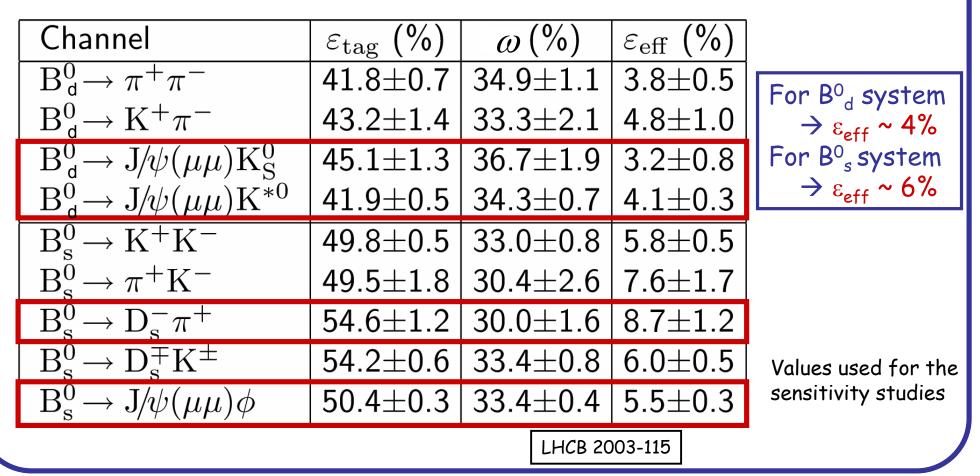

- affects statistical and systematic precision

Current LHCb Tagging strategy:

- \Rightarrow opposite side lepton tag (b \rightarrow /)
- $\stackrel{}{\rightsquigarrow}$ opposite side kaon tag ($b \rightarrow c \rightarrow s$)
- same side kaon tag (for B_s^0 only)
- ☆ opposite B vertex charge tagging

Expected improvements (DC04):

- \Rightarrow add a same side pion tag ($\epsilon_{eff} \sim 0.8\%$)
- \Rightarrow improve bkg rejection for e, μ channels
- \Rightarrow add a same side pion tag (B⁰_d, B^{**}_d)
- \Rightarrow Improve same side kaon tag including $B^{**}{}_s$
- ☆ improve inclusive secondary vertex reconstruction (separating b⇔c vertices)


LHCB 2003-115

 $Q_{\rm vtx}$

effective efficiency: $\epsilon_{eff} = \epsilon_{tag} (1-2\omega)^2$ ☆ Tagging efficiency : ε_{tag}
 ☆ Wrong tag fraction (if there is a tag) : ω

Physics at the LHC, Vienna

Decays of Interest

☆ Channels used in this talk to study the oscillations amplitudes at LHCb:

$$\begin{split} B_d^0 &\to J/\Psi(\mu^+\mu^-) \ K^{*0}(K^+\pi^-) & \Delta m_d \ , \omega_d \\ B_d^0 &\to J/\Psi(\mu^+\mu^-) \ K_s^0 & \Delta m_d \ , \omega_d, \ \sin 2\beta \\ B_s^0 &\to D_s^-(K^+K^-\pi^-) \ \pi^+ & \Delta m_s, \omega_s, \frac{\Delta\Gamma_s}{\Gamma_s} \\ B_s^0 &\to J/\Psi(\mu^+\mu^-) \ \phi(K^+K^-) \quad \mathsf{R}_{\mathsf{T}}, \Delta m_s, \omega_s, \frac{\Delta\Gamma_s}{\Gamma_s}, \ \sin \phi_s \\ B_s^0 &\to J/\Psi(\mu^+\mu^-) \ \eta(\gamma\gamma) & \Delta m_s, \omega_s, \frac{\Delta\Gamma_s}{\Gamma_s}, \ \sin \phi_s \\ B_s^0 &\to \eta_c(4h) \ \phi(K^+K^-) & \Delta m_s, \omega_s, \frac{\Delta\Gamma_s}{\Gamma_s}, \ \sin \phi_s \end{split}$$

SM mixing parameters:

$$\Delta m_{d} \sim 0.5 \text{ ps}^{-1}, \quad \Delta m_{s} \sim 20 \text{ ps}^{-1}, \\ \Delta \Gamma_{d} / \Gamma_{d} \sim 0, \qquad \Delta \Gamma_{s} / \Gamma_{s} \sim 10\%, \\ \sin 2\beta \sim 0.7, \qquad \sin \phi_{s} \sim -0.04$$

Physics at the LHC, Vienna

Frequencies

Phases

Full MC Simulation Results

LHCb ГНСр

☆ Values obtained from full MC simulation for the decays of interest

	ϵ_{tot} (in %)	Yield (10 ³ /y)	$\sigma(m_B)$ (MeV)	σ (τ) (fs)	B/S
$B^{0}_{d} \rightarrow J/\psi K^{*0}$	1.5	670	15	na	0.17
$B^{0}_{d} \rightarrow J/\psi K^{0}_{s}$	1.4	216	11	43	0.67
$B^{0}_{s} \rightarrow D^{-}_{s} \pi^{+}$	0.34	80	14	33	0.32
B ⁰ _s →J/ψφ	1.7	100	15	38	< 0.3*
B ⁰ _s → J /ψη	0.46	7	33	45	< 1.6*
$B^{0}{}_{s} \rightarrow \eta_{c} \phi$	0.08	3	13	33	< 0.8*

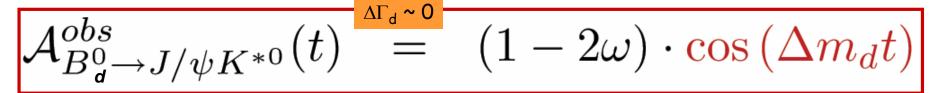
Improvements since the TDR

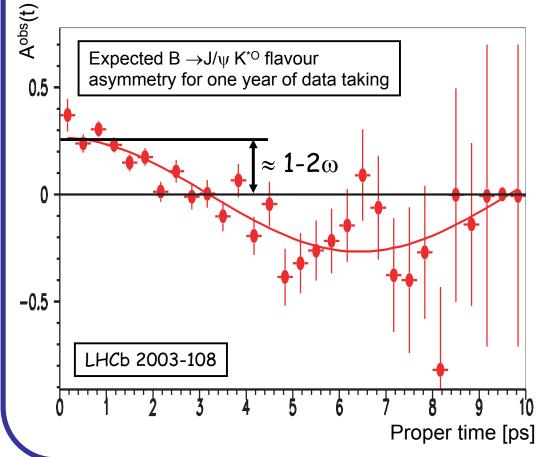
CERN/LHCC 2003-030

- ε_{tot} : total signal efficiency (with trigger, without tagging)
- B/S estimated from inclusive bb events (*: 90% CL upper limit)

Sensitivity Studies

- Sensitivities of LHCb to the CP observables are assessed using fast toy MC experiments
 - efficiencies and resolutions from the full simulation
 - Systematic effects monitored from data (control channels without CR)
- ☆ Unbinned maximum likelihood fit used (except for $B^0 \rightarrow J/\psi K_s^0$ binned)

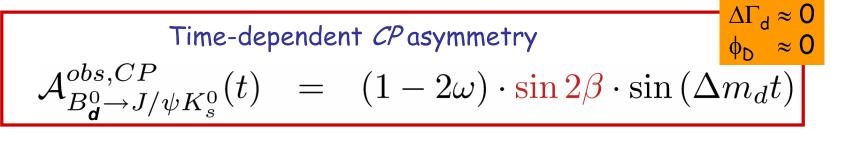

$$\mathcal{L} = \prod_{events} \left[f_i^{sig} \mathcal{R}_i^{sig} + (1 - f_i^{sig}) \mathcal{R}_i^{bkg} \right]$$


- f^{sig}: probability to have signal, R: the observed decay rates
- ☆ Decay rates are
 - convoluted with proper-time resolution or/and
 - weighted with acceptance

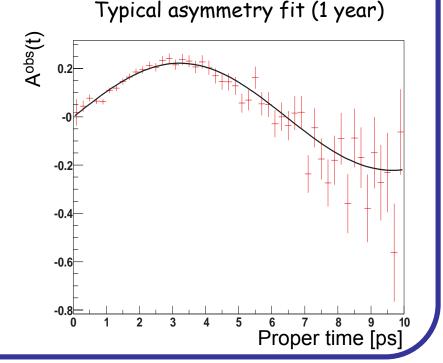
 \Rightarrow Focus on sin(ϕ_s): real challenge for mixing measurements and searches for NP

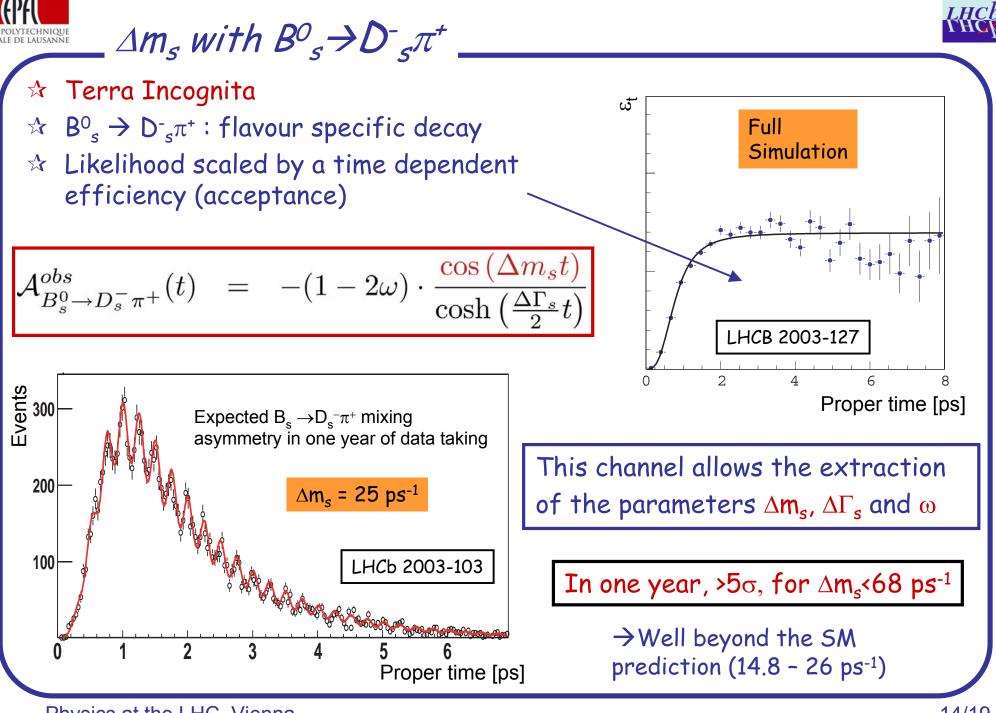
Imperfect flavour tagging *dilutes* the asymmetry!

 ☆ Flavour specific channel used to study systematics - no ℃R expected
 ☆ Also used to check the LHCb tagging method - tagged by kaon charge

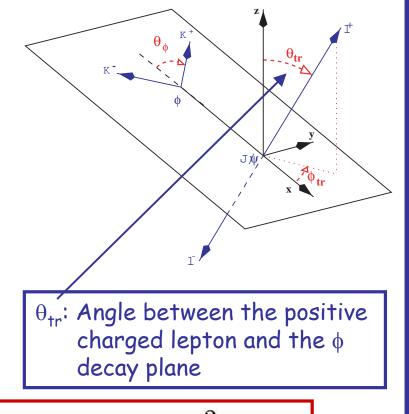

> <u>Control channel</u> Used to extract @

ω = (36.5 ± 1.0) %


Error propagated to the other sensitivities - systematics



- \Rightarrow Theoretically the cleanest way to measure β
- \Rightarrow Large and well known asymmetry serves mainly as calibration
- ☆ 200 experiments performed corresponding to 1 year each
- ☆ LHCb sensitivity to sin(2β) in one year - 216k events $\sigma_{LHCb}(sin2β) = 0.022$
- World average in 2006
 σ_{World}(sin2β) ~ 0.02
- \Rightarrow What can LHCb bring to sin2 β ?
 - STATISTICS
 - Comparing with other channels, may indicate NP in penguin diagrams


Physics at the LHC, Vienna

$B_{s}^{0} \rightarrow J/\psi \phi$: Sensitivity Studies

☆ B_s^0 counterpart of $B_d^0 \rightarrow J/\psi K_s^0 \rightarrow measures \phi_s \rightarrow Terra incognita$

- The final state is an admixture of CP eigenstates
 - f = 0, ||: CP-even configuration, η_f = +1
 - f = \perp : CP-odd configuration, η_{f} = -1
- Linear polarization amplitudes are introduced:
 - $A_{f}(t)$ for f=0, ||, \perp
 - The fraction of CP-odd is defined as $R_T \equiv |A_{\perp}(0)|^2 / \sum_f |A_f(0)|^2 \sim 20\%$
- The one-angle θ_{tr} distribution enables to disentangle the different CP eigenstates

$$\frac{d\Gamma(t)}{d(\cos(\theta_{tr}))} \propto \left[|A_0(t)|^2 + |A_{\parallel}(t)|^2 \right] \frac{3}{8} (1 + \cos^2\theta_{tr}) + |A_{\perp}(t)|^2 \frac{3}{4} \sin^2\theta_{tr}$$

Description for $B^{0}_{s} \rightarrow J/\psi \phi$ Fit

Full

Simulation

 $B^{0} \rightarrow J/\psi \phi$

Proper time error [ps]

☆ Due to fast oscillations, need to be very sensitive to proper time

3000

vents

Ш

- Precise proper-time measurements are needed
- → A computed per-event lifetime error is used in the fast simulation such that an experimental uncertainty is assigned to each generated event
- ☆ The transversity angle cos(θ_{tr}) for B⁰_s → J/ψ φ ₁₅₀₀ is introduced
 - angular distribution of the two vector-mesons in the final state

☆ Physics parameters:

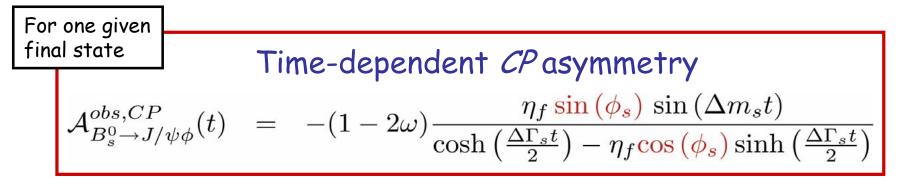
- extracted using an "unbinned maximum" likelihood fit to
 - the proper time
 - the mass distribution
 - and the transversity angle for ${\rm B^0}_s \to {\rm J}/\psi \; \phi$
- ☆ Fit simultaneously maximized with the control sample $B^{0}_{s} \rightarrow D^{-}_{s} \pi^{+}$, which allows the determination of Δm_{s} , $\Delta \Gamma_{s}/\Gamma_{s}$, ω

Fit Procedure for $B^0_{\ s} \rightarrow J/\psi \phi$

- *циср*
- 1. The mass distributions are fitted and the per-event signal probability is determined, based on the reconstructed mass
- 2. The sidebands are used to determine the background parameters
- 3. In the signal window, the physics parameters are fitted:

 $\Delta m_s, \Delta \Gamma_s / \Gamma_s, 1 / \Gamma_s, \omega, \phi_s \text{ and } R_T$

☆ Determined by $B^{0}_{s} \rightarrow J/\psi \phi$ and $B^{0}_{s} \rightarrow D^{-}_{s} \pi^{+}$


 $\Leftrightarrow~\mbox{Completely determined by B^0_s} \rightarrow J/\psi \, \phi$

★ Likelihood: $\mathcal{L} = \prod_{events} \mathcal{L}_m \mathcal{L}_{\theta_{tr}} \mathcal{L}_t \qquad \stackrel{\Rightarrow}{\Rightarrow} \mathcal{L}_m^\infty \begin{cases} \text{Gaussian for signal} \\ \text{Exponential for bkg} \\ \Rightarrow \mathcal{L}_t \propto \text{ Decay rates (incl. res)} \end{cases}$ $\mathcal{L}_{\theta_{tr}} = R_T \frac{1 - \cos^2 \theta_{tr}}{2} + (1 - R_T)(1 + \cos^2 \theta_{tr})$ $\Rightarrow 1000 \text{ toy experiments, each corresponding to 1 year of LHCb, are performed.}$

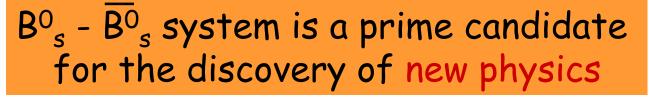
Expected Sensitivities for ϕ_s

- \Rightarrow B⁰_s→J/ψη, B⁰_s→η_cφ: increase the sensitivity to $φ_s$
 - Decays to pure CP-eigenstates (CP-even)
 - Same physics, but no angular analysis needed

Sensitivity (1 year)	σ (ΔΓ _s /Γ _s)	σ (φ _s) [rad]	
$B^{0}{}_{s} \rightarrow J/\psi \phi$	0.018	0.06	
B ⁰ _s →J/ψ η	~ 0.025	~ 0.1	
$B_{s}^{0} \rightarrow \eta_{c} \phi$	~ 0.025	~ 0.1	ſ
Combined ϕ_s sensitivity	~ 0.05		

Preliminary results

⇒ Statistical sensitivity to ϕ_s after five years of LHCb data taking → $\sigma(\phi_s) \sim 0.02$, with $\phi_s \sim 0.04$ in the SM



Summary

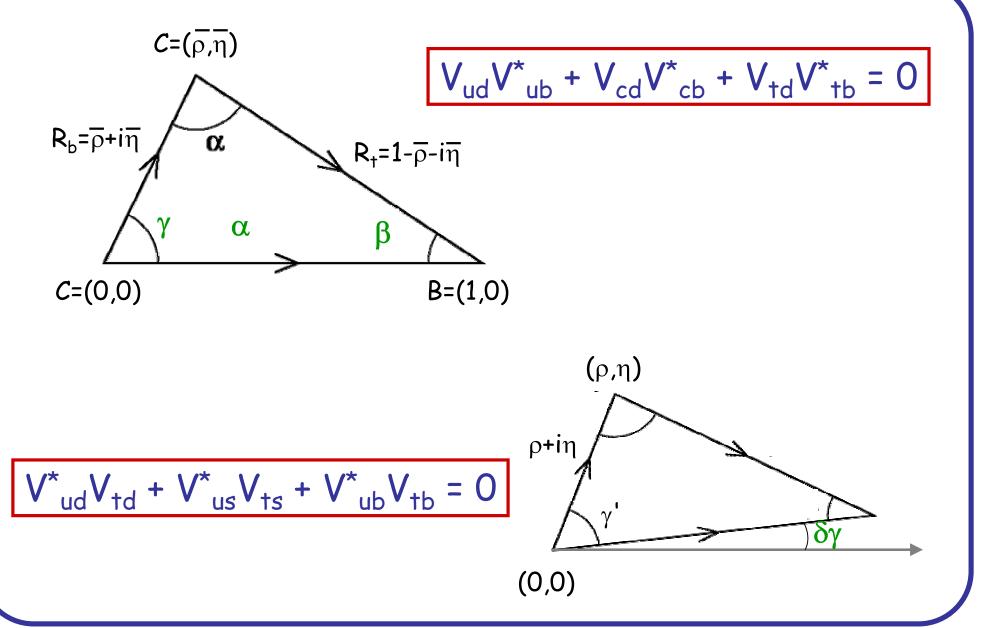
- ☆ We have presented the way to extract the phases and frequencies at LHCb using the channels:
 - $B^{0} \rightarrow J/\psi K^{*0}, B^{0} \rightarrow J/\psi K^{0}_{s}, B^{0}_{s} \rightarrow D^{-}_{s} \pi^{+}, B^{0}_{s} \rightarrow J/\psi \phi, B^{0}_{s} \rightarrow J/\psi \eta, B^{0}_{s} \rightarrow \eta_{c} \phi$
- \Rightarrow The sensitivities after one year to the parameters of interest are:
 - $> 5\sigma$ for $\Delta m_s < 68 \text{ ps}^{-1}$ Δm_{s}

 - $\sigma_{LHCb}(\sin\phi_s) \sim 0.05$
 - $\sigma_{LHCb}(sin2\beta) \sim 0.022$ (in 2006, world average: ~0.02)
- \Rightarrow LHCb contribution to these parameters (after one year of running):
 - Reduce $\sin 2\beta$ uncertainties
 - Measure very precisely $\Delta m_s \rightarrow$ First steps in B_s-mixing physics
 - If Δm_s is within the SM expectations, no need of 2fb⁻¹ to measure it
 - Determine $\sin \phi_s$
 - to 2σ within 5 years if SM
 - to 4σ within 1 year if $\sin \phi_s \sim \lambda$

BACK-UP SLIDES

Physics at the LHC, Vienna

20/19


BKP: Measurements of the Unitary Triangle

- α $B \rightarrow \rho \pi$ gives access to sin2 α as well as $B \rightarrow \pi \pi$ but the last one requires the knowledge of the "penguin pollution", which can be extracted from $B \rightarrow K\pi$.
- β The B⁰-B⁰ mixing phase ϕ_B (= 2 β) can be extracted from $B \rightarrow J/\psi K^0_s$ and similar channels. Also $B \rightarrow \phi K^0_s$ allows the measurement of 2 β but it appears in a penguin loop. This difference can show signs of a new physics if both measurement don't give the same results.
- γ This angle cannot be measured directly but it can be extracted from the $B \rightarrow D^*\pi$ channel, which depend on $\gamma + \phi_B$ using ϕ_B from the measurement described above, or from $B_s \rightarrow D_s K$ which is sensitive to $\gamma + \phi_{Bs}$.
- δγ The B_s mixing phase φ_{Bs} is equal to -2δγ and can be extracted from B⁰_s→J/ψη or B⁰_s→J/ψφ.
- $|\mathbf{R}_{b}|$ This is the length of the CA side of the unitary triangle, It corresponds to the ratio $|V_{ub}|/|V_{cb}|$. Both the numerator and the denominator can be obtained from inclusive semileptonic B decays.
- $|R_t|$ This is the most difficult element to measure. $|R_t|=1/\lambda^*|V_{td}|/|V_{cd}|$ in which the problematic therm is V_{td} . At the LHC the most efficient way to extract it is through the ratio of the branching fraction of B→IIX_d and B→IIX_s, which is $|V_{td}|^2/|V_{cd}|^2$ (1+corrections) and thus requires $|V_{ts}|$ known.

BKP: Unitary Triangles

Physics at the LHC, Vienna

BKP: Tagging Power Characterisation

- \Rightarrow The tagging efficiency is also important (no tags means no physics)
- The best combination of these values arises when looking at the statistical uncertainty of the real asymmetry:

$$\mathcal{A} = \frac{\mathcal{A}^m}{1 - 2\omega} \quad \Rightarrow \quad \sigma_{\mathcal{A}} = \frac{\sigma_{\mathcal{A}^m}}{1 - 2\omega}$$
$$\mathcal{A}^m = \frac{R^m - \bar{R}^m}{R^m + \bar{R}^m} \quad \Rightarrow \quad \sigma_{\mathcal{A}^m}^2 = \left(\frac{\partial \mathcal{A}^m}{\partial R^m}\right)^2 \sigma_{R^m}^2 + \left(\frac{\partial \mathcal{A}^m}{\partial \bar{R}^m}\right)^2 \sigma_{\bar{R}^m}^2$$
$$\sigma_{\mathcal{A}^m}^2 \quad = \quad \frac{4R^m \bar{R}^m}{(R^m + \bar{R}^m)^3}$$

At this point, one should note that: $1 - \mathcal{A}^{m2} = \frac{4R^mR}{(R^m + \bar{R})^2}$

$$\sigma_{\mathcal{A}^{m}}^{2} = \frac{1 - \mathcal{A}^{m2}}{R^{m} + \bar{R}^{m}} = \frac{1 - \mathcal{A}^{m2}}{N^{m}} = \frac{1 - \mathcal{A}^{m2}}{\epsilon_{tag}N}$$

$$\sigma_{\mathcal{A}} = \frac{\sqrt{1 - \mathcal{A}^{m2}}}{\sqrt{\epsilon_{tag}}\sqrt{N}(1 - 2\omega)} \propto \frac{1}{\sqrt{\epsilon_{tag}}(1 - 2\omega)} \right\} \epsilon_{eff} = \epsilon_{tag}(1 - 2\omega)^{2}$$

Thus:

Which states that we need to maximize the effective tagging efficiency

BKP: Angular distribution

- ☆ In $B_s^0 \rightarrow J/\psi \phi$ the final state is an admixture of CP eigenstates
 - f = 0, ||: CP-even configuration, η_f = +1
 - f = \perp : CP-odd configuration, η_{f} = -1
- ☆ Linear polarization amplitudes corresponding to the different configurations are introduced (hep-ph 9804293, hep-ph 0012219): A_f(t) for f=0, ||, ⊥
 - The fraction of CP-odd is defined as $R_T \equiv |A_{\perp}(0)|^2 / \sum_f |A_f(0)|^2 \sim 20\%$
- ☆ Each of the $|A_f(t)|^2$ corresponds to an ordinary decay rate of a pure CP eigenstate for a $\overline{b} \rightarrow \overline{ccs}$ transition (for a given η_f value)
- \Rightarrow Assuming that cos($\varphi_s)\approx$ 1, we get the following analytical decay rates
 - For initially pure B_s^0

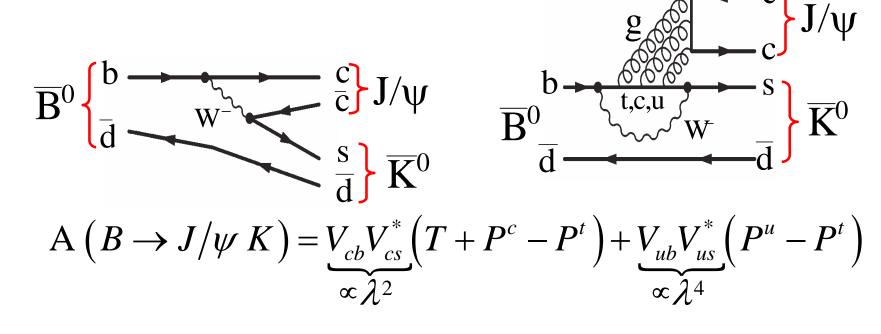
$$\begin{aligned} |A_f(t)|^2 &= |A_f(0)|^2 \left[e^{-\Gamma_{\rm L} t} + e^{-\Gamma_s t} \sin(\phi_s) \sin(\Delta M_s t) \right], \quad f = 0, \\ |A_{\perp}(t)|^2 &= |A_{\perp}(0)|^2 \left[e^{-\Gamma_{\rm H} t} - e^{-\Gamma_s t} \sin(\phi_s) \sin(\Delta M_s t) \right] \end{aligned}$$

- For initially pure $\overline{B^0}_s$

$$\begin{aligned} \left|\bar{A}_{f}(t)\right|^{2} &= |A_{f}(0)|^{2} \left[e^{-\Gamma_{\rm L}t} - e^{-\Gamma_{s}t}\sin(\phi_{s})\sin(\Delta M_{s}t)\right], \quad f = 0, \\ \left|\bar{A}_{\perp}(t)\right|^{2} &= |A_{\perp}(0)|^{2} \left[e^{-\Gamma_{\rm H}t} + e^{-\Gamma_{s}t}\sin(\phi_{s})\sin(\Delta M_{s}t)\right] \end{aligned}$$

Note: there is no CP violation in the decay rates

Physics at the LHC, Vienna


Systematic uncertainties

- *гнср*
- ☆ The systematic errors due to acceptance, detection efficiency, decaytime resolution, production asymmetries, tagging performance and trigger efficiency must be well understood.
- ☆ Possible sources of systematic uncertainty:
 - Asymmetry of b vs b production
 - Detector efficiencies which depend on charge
 - can bias tagging efficiencies
 - can fake CP asymmetries
 - CP asymmetry also in background processes
- Alternate runs, swapping the orientation if the magnetic field
- ☆ Use control samples available with high statistics:
 - $B_s \rightarrow D_s \pi$ 80k events/year
 - $B^0 \rightarrow J/\psi K^*$ 670k events/year
 - $B^{\pm} \rightarrow J/\psi K^{\pm}$ 1700k events/year
 - \rightarrow Control sample sometimes too different from the signal sample !!!
- \Rightarrow Study CP asymmetries in the B mass side bands

BKP: Are we sure that $S(J/\psi K_s) = sin(2\beta)$??

$$V = \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$V_{ub}V_{us}^* + V_{cb}V_{cs}^* + V_{tb}V_{ts}^* = 0$$

Leading penguin contribution has same weak phase as tree →Extraction of sin(2β) from J/ψK_S is "theoretically clean"

BKP: Monte Carlo simulation

Physics potential is estimated using "Data challenges", i.e. "big" number of simulated events

- ☆ 2003: 67M events
 - 10M bb events (~4 minutes of data taking !)
 - Pythia, QQ, GEANT3

☆ 2004: 180M events simulation and analysis in a distributed way (Grid)

- Started in May, already >50M events produced
- Pythia, EvtGen, GEANT4
- >3000 jobs running in parallel all over the world

Digitization, trigger and reconstruction are simulated using full detector response, based on test beam data