

B_d and B_s Mixing at LHCb

On behalf of the LHCb Collaboration

Benjamin Carron

LPHE - EPF Lausanne

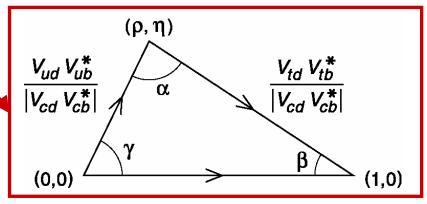
Physics at the LHC, Vienna July 15th, 2004

- ☆ CP Violation
- \Rightarrow B- \overline{B} Asymmetry
- ☆ LHCb simulation
- ☆ Oscillations and Phases
- ☆ Summary

The CKM Matrix: Unitarity Triangles

- ☆ Standard Model description of CP violation based on the CKM matrix
 - CP violation appears only in the charged current weak interaction of quarks

$$V_{\text{CKM}} = \left(\begin{array}{c|c} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{array} \right) = \left(\begin{array}{c|c} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^3 \end{array} \right) + \mathcal{O}(\lambda^4)$$
"Complex" phase

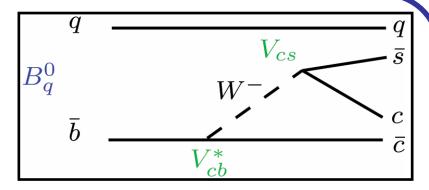

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

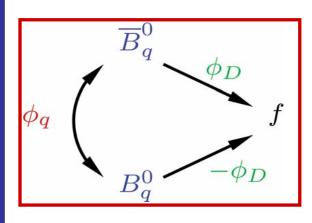
$$\lambda = V_{us} = \sin(\theta_{Cabibbo}) = 0.22$$

$$A = V_{cb} / \lambda^2 = 0.83$$

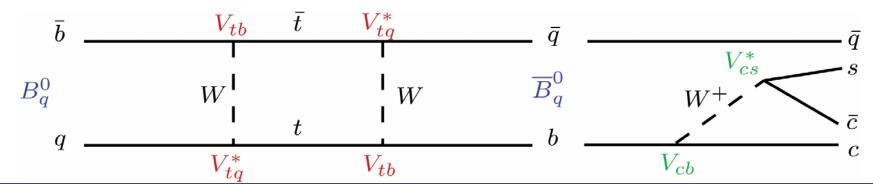
$$\rho - i\eta = V_{ub} / A\lambda^3$$

$$d \cdot b^* = 0$$
 (B_d system)
 $s \cdot b^* = 0$ (B_s system)


This unitarity relation is drawn in the ρ - η complex plane as a triangle



$\overline{b} \rightarrow \overline{c}c\overline{s}$ Transitions: Decays to CP eigenstates


⇒ Decays dominated by only one CKM phase: $\phi_D \equiv -arg[V^*_{cb}V_{cs}] \rightarrow small$

- \Rightarrow Due to the mixing, the flavour states $B_q^0 \overline{B}_q^0$ can either remain unchanged and decay to f, or oscillate into each other, ...

$$\phi_{CKM} = \phi_q - 2 \phi_D \approx \phi_q \neq 0, \pi$$

New Physics

- \Rightarrow B_d-system: $\phi_d \equiv 2 \text{ arg}[V^*_{td}V_{tb}]$ well measured $(\sin(\phi_d) = 0.7)$
- \Rightarrow B_s-system: $\phi_s = 2 \text{ arg}[V^*_{ts}V_{tb}]$ not measured yet $(\sin(\phi_s^{SM}) \sim -0.04)$
 - Cannot be measured at B-factories working at Y(4s)
 - → "Highway" towards New Physics
- SUSY contribution (mainly induced by gluino exchange) to the B^0_s - $\overline{B^0}_s$ transitions could drastically change the SM prediction

 (P. Ball et al., hep-ph/0311361) \overline{B}^0_s

-
$$\sin(\phi_s) \sim -1$$
 (SM: $\sin(\phi_s) \sim -0.04$)

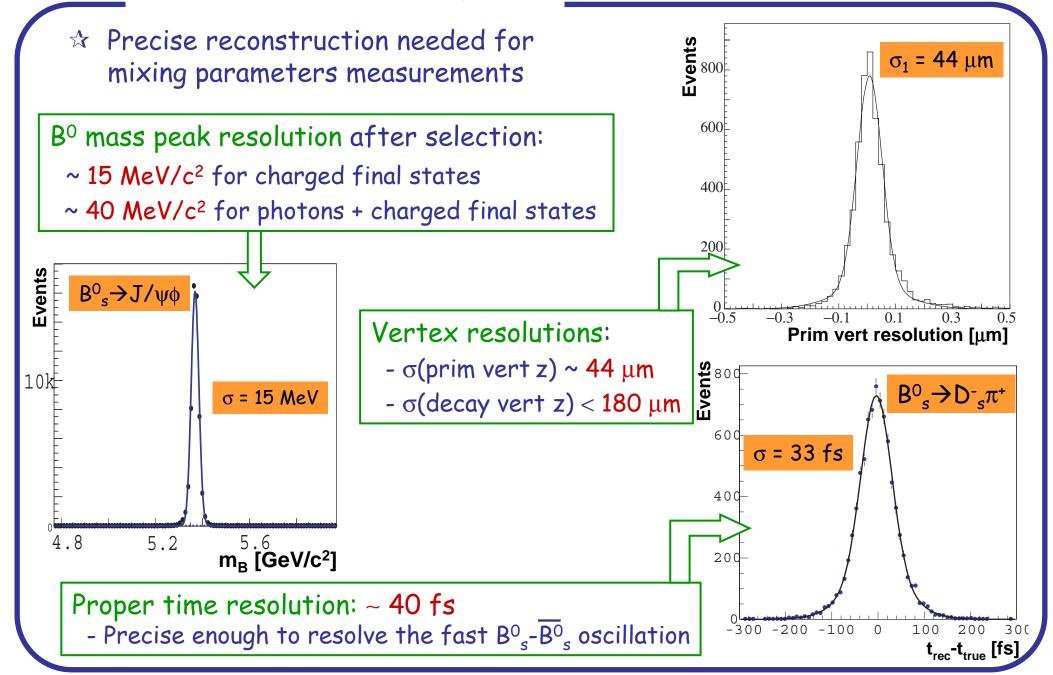
- $\Delta m_s = (10 10^4) \text{ ps}^{-1}$ (SM: $\Delta m_s = 20 \text{ ps}^{-1}$)
- \Rightarrow Up-type singlets models (quark mixing matrix (3+n_u)x3) (J.A. Aguilar-Saavedra et al., hep-ph/0406151)
 - $sin(\phi_s) \sim \lambda \sim 0.22$

CP measurements in LHCb

The study of CP violation implies measurement of time-dependent decay asymmetry between the B^0 and the $\overline{B^0}$ into CP eigenstates

$$\mathcal{A}^{obs}_{\mathrm{CP}}(t) \equiv egin{array}{c} R\left(\overline{B^0}(t)
ightarrow f_{CP}
ight) - R\left(B^0(t)
ightarrow f_{CP}
ight) & \mathrm{t} : \mathrm{Proper \ time} \\ R\left(B^0(t)
ightarrow f_{CP}
ight) + R\left(\overline{B^0}(t)
ightarrow f_{CP}
ight) & \mathrm{f} : \mathrm{Measured \ decay \ rate} \\ \mathrm{f}_{\mathit{CP}} = \overline{\mathrm{f}}_{\mathit{CP}} & \mathrm{f}_{\mathit{CP}} \end{array}$$

 \Rightarrow Tagging \Rightarrow dilution of the theoretical asymmetry by a factor D = (1-2 ω) (In case of perfect resolution and no bkg) $\mathcal{A}_{\mathrm{CP}}^{obs}(t) = D \cdot \mathcal{A}_{\mathrm{CP}}^{th}(t)$

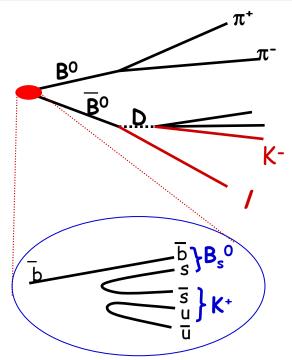

To estimate LHCb performances to the tagging and physics parameters → need of a full MC simulation:

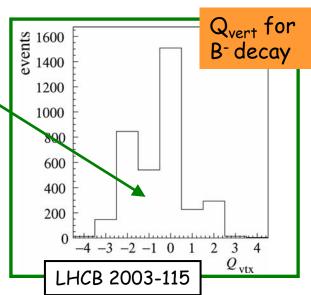
- Generation of minimum bias p-p, incl. pile-up and spill-over ($\sqrt{s} = 14 \text{TeV}$) → Pythia 6.2
- Decay of unstable particles → QQ
- Tracking and detector response → Geant 3

Reconstruction at LHCb

Flavour Tagging

Knowledge of B initial flavour is essential for any ER measurements


- affects statistical and systematic precision


Current LHCb Tagging strategy:

- \Rightarrow opposite side lepton tag (b \rightarrow /)
- \Rightarrow opposite side kaon tag (b \rightarrow c \rightarrow s)
- \Rightarrow same side kaon tag (for B_s^0 only)

Expected improvements (DC04):

- \Rightarrow add a same side pion tag (ϵ_{eff} ~0.8%)
- \Rightarrow improve bkg rejection for e, μ channels
- \Rightarrow add a same side pion tag (B_d^0 , B_d^{**})
- ☆ Improve same side kaon tag including B**
 s
- improve inclusive secondary vertex reconstruction (separating b↔c vertices)

Flavour Tagging

effective efficiency:

 $\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} (1-2\omega)^2$

 \Rightarrow Tagging efficiency : ε_{tag}

Wrong tag fraction
 (if there is a tag) : ω

Channel	$\varepsilon_{ m tag}$ (%)	<i>ω</i> (%)	$\varepsilon_{ ext{eff}}$ (%)
$B_d^0 \rightarrow \pi^+\pi^-$	41.8 ± 0.7	34.9 ± 1.1	3.8 ± 0.5
$B_d^0 \rightarrow K^+\pi^-$	43.2±1.4	33.3 ± 2.1	4.8±1.0
$\mathrm{B}^0_{\mathtt{d}}\! \to \mathrm{J}\!/\!\psi(\mu\mu)\mathrm{K}^0_\mathrm{S}$	45.1±1.3	36.7 ± 1.9	3.2 ± 0.8
$\mathrm{B}^0_{d} \to \mathrm{J}/\psi(\mu\mu)\mathrm{K}^{*0}$	41.9 ± 0.5	34.3 ± 0.7	4.1 ± 0.3
$B_s^0 \to K^+K^-$	49.8±0.5	33.0±0.8	5.8±0.5
$B_s^0 \rightarrow \pi^+ K^-$	49.5 ± 1.8	30.4 ± 2.6	7.6 ± 1.7
$\mathrm{B_s^0}\!\to\mathrm{D_s^-}\pi^+$	54.6 ± 1.2	30.0 ± 1.6	$8.7{\pm}1.2$
$B_s^0 \to D_s^{\mp} K^{\pm}$	54.2 ± 0.6	33.4 ± 0.8	6.0 ± 0.5
$B_s^0 \rightarrow J/\psi(\mu\mu)\phi$	50.4 ± 0.3	33.4±0.4	5.5±0.3

For B_d^0 system $\rightarrow \epsilon_{eff} \sim 4\%$ For B_s^0 system $\rightarrow \epsilon_{eff} \sim 6\%$

Values used for the sensitivity studies

LHCB 2003-115

Decays of Interest

☆ Channels used in this talk to study the oscillations amplitudes at LHCb:

$$\begin{array}{lll} B_d^0 \to J/\Psi(\mu^+\mu^-) \ K^{*0}(K^+\pi^-) & \Delta m_d \ , \omega_d \\ B_d^0 \to J/\Psi(\mu^+\mu^-) \ K_s^0 & \Delta m_d \ , \omega_d , \sin 2\beta \\ B_s^0 \to D_s^-(K^+K^-\pi^-) \ \pi^+ & \Delta m_s , \omega_s , \frac{\Delta \Gamma_s}{\Gamma_s} \\ B_s^0 \to J/\Psi(\mu^+\mu^-) \ \phi(K^+K^-) & \mathsf{R}_\mathsf{T}, \Delta m_s , \omega_s , \frac{\Delta \Gamma_s}{\Gamma_s} , \sin \phi_s \\ B_s^0 \to J/\Psi(\mu^+\mu^-) \ \eta(\gamma\gamma) & \Delta m_s , \omega_s , \frac{\Delta \Gamma_s}{\Gamma_s} , \sin \phi_s \\ B_s^0 \to \eta_c(4h) \ \phi(K^+K^-) & \Delta m_s , \omega_s , \frac{\Delta \Gamma_s}{\Gamma_s} , \sin \phi_s \end{array}$$

Frequencies

Phases

SM mixing parameters:

$$\Delta m_{\rm d} \sim 0.5 \ {\rm ps^{-1}}, \quad \Delta m_{\rm s} \sim 20 \ {\rm ps^{-1}}, \\ \Delta \Gamma_{\rm d} / \Gamma_{\rm d} \sim 0, \quad \Delta \Gamma_{\rm s} / \Gamma_{\rm s} \sim 10\%, \\ \sin 2\beta \sim 0.7, \quad \sin \phi_{\rm s} \sim -0.04$$

Full MC Simulation Results

☆ Values obtained from full MC simulation for the decays of interest

	ε_{tot} (in %)	Yield (10 ³ /y)	$\sigma(m_B)$ (MeV)	σ(τ) (fs)	B/S
$B_d \rightarrow J/\psi K_0$	1.5	670	15	na	0.17
$B^0_d \rightarrow J/\psi K^0_s$	1.4	216	11	43	0.67
$B^0_s \rightarrow D^s \pi^+$	0.34	80	14	33	0.32
$B^0_s \rightarrow J/\psi \phi$	1.7	100	15	38	< 0.3*
$B^0_s \rightarrow J/\psi \eta$	0.46	7	33	45	< 1.6*
$B^0_s \rightarrow \eta_c \phi$	0.08	3	13	33	< 0.8*

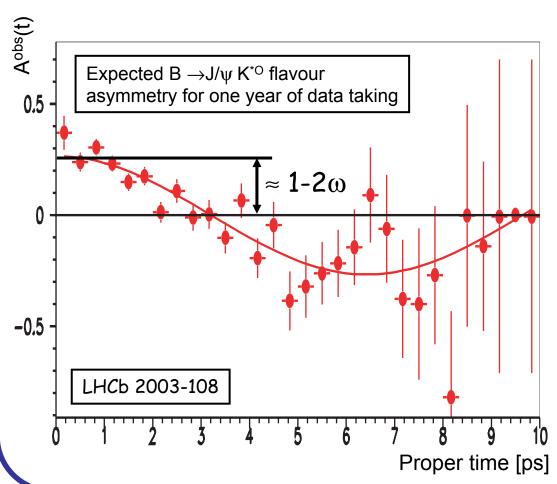
CERN/LHCC 2003-030

- ε_{tot} : total signal efficiency (with trigger, without tagging)
- B/S estimated from inclusive bb events (*: 90% CL upper limit)

Sensitivity Studies _

- Sensitivities of LHCb to the CP observables are assessed using fast toy MC experiments
 - efficiencies and resolutions from the full simulation
 - Systematic effects monitored from data (control channels without CR)
- \Rightarrow Unbinned maximum likelihood fit used (except for $B^0 \rightarrow J/\psi K_s^0$ binned)

$$\mathcal{L} = \prod_{events} \left[f_i^{sig} \mathcal{R}_i^{sig} + (1 - f_i^{sig}) \mathcal{R}_i^{bkg} \right]$$


- f^{sig}: probability to have signal, R: the observed decay rates
- - convoluted with proper-time resolution or/and
 - weighted with acceptance
- \Rightarrow Focus on $sin(\phi_s)$: real challenge for mixing measurements and searches for NP

Δm_d with $B^0_d \rightarrow J/\psi K^{*0}$

$$\mathcal{A}_{B_d^0 \to J/\psi K^{*0}}^{obs}(t) \stackrel{\Delta\Gamma_d \sim 0}{=} (1 - 2\omega) \cdot \cos(\Delta m_d t)$$

Imperfect flavour tagging dilutes the asymmetry!

- ☆ Flavour specific channel used to study systematics no CR expected
- ☆ Also used to check the LHCb tagging method tagged by kaon charge

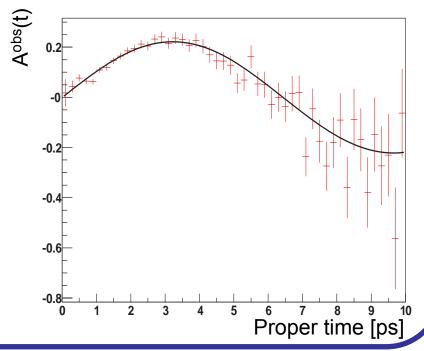
Control channel

Used to extract w

$$\omega$$
 = (36.5 ± 1.0) %

Error propagated to the other sensitivities - systematics

Golden Decay Mode: $B^0_d \rightarrow J/\psi K^0_S$

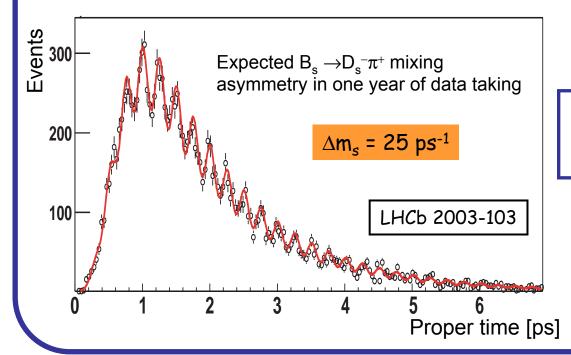

Time-dependent CP asymmetry

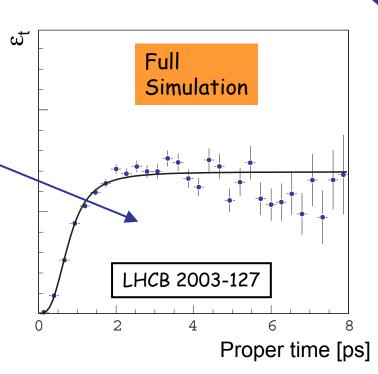
$$\Delta\Gamma_{\rm d} \approx 0$$
 $\phi_{\rm D} \approx 0$

$$\mathcal{A}_{B_d^0 \to J/\psi K_s^0}^{obs, CP}(t) = (1 - 2\omega) \cdot \sin 2\beta \cdot \sin (\Delta m_d t)$$

- \Rightarrow Theoretically the cleanest way to measure β
- ☆ Large and well known asymmetry serves mainly as calibration
- ☆ 200 experiments performed corresponding to 1 year each
- \Rightarrow LHCb sensitivity to sin(2β) in one year 216k events $\sigma_{LHCb}(\sin 2\beta) = 0.022$
- World average in 2006
 $σ_{World}(sin2β) \sim 0.02$
- \Rightarrow What can LHCb bring to $\sin 2\beta$?
 - STATISTICS
 - Comparing with other channels, may indicate NP in penguin diagrams

Typical asymmetry fit (1 year)



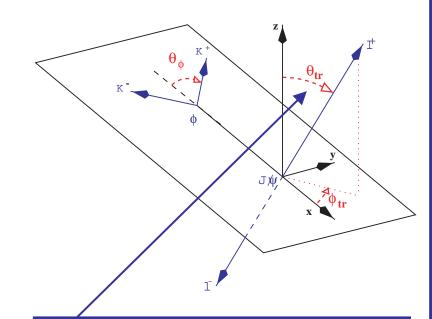

Δm_s with $B^0_s \rightarrow D^-_s \pi^+$

- ☆ Terra Incognita
- $\Rightarrow B^{0}_{s} \rightarrow D^{-}_{s}\pi^{+}$: flavour specific decay
- ☆ Likelihood scaled by a time dependent efficiency (acceptance)

$$\mathcal{A}_{B_s^0 \to D_s^- \pi^+}^{obs}(t) = -(1 - 2\omega) \cdot \frac{\cos(\Delta m_s t)}{\cosh(\frac{\Delta \Gamma_s}{2} t)}$$

This channel allows the extraction of the parameters Δm_s , $\Delta \Gamma_s$ and ω

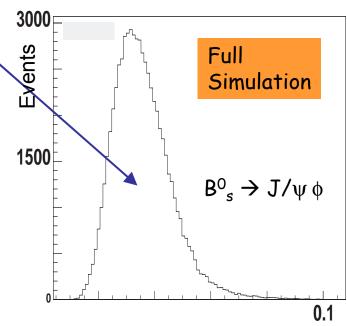
In one year, >5 σ , for $\Delta m_s < 68 \text{ ps}^{-1}$


→ Well beyond the SM prediction (14.8 - 26 ps⁻¹)

$B^{0}_{s} \rightarrow J/\psi \phi$: Sensitivity Studies

- ☆ The final state is an admixture of CP eigenstates
 - f = 0, ||: CP-even configuration, $\eta_f = +1$
 - $f = \bot$: CP-odd configuration, $\eta_f = -1$
- ★ Linear polarization amplitudes are introduced:
 - $A_f(t)$ for f=0, $|\cdot|$, \perp
 - The fraction of CP-odd is defined as $R_T = |A_\perp(0)|^2 / \sum_f |A_f(0)|^2 \sim 20\%$
- The one-angle θ_{tr} distribution enables to disentangle the different CP eigenstates

 θ_{tr} : Angle between the positive charged lepton and the ϕ decay plane


$$\frac{d\Gamma(t)}{d(\cos(\theta_{tr}))} \propto \left[|A_0(t)|^2 + |A_{\parallel}(t)|^2 \right] \frac{3}{8} (1 + \cos^2 \theta_{tr}) + |A_{\perp}(t)|^2 \frac{3}{4} \sin^2 \theta_{tr}$$

Description for $B^{O}_{s} \rightarrow J/\psi \phi Fit$

- Due to fast oscillations, need to be very sensitive to proper time
 - Precise proper-time measurements are needed
 - → A computed per-event lifetime error is used in the fast simulation such that an experimental uncertainty is assigned to each generated event
- ⇒ The transversity angle cos($θ_{tr}$) for $B^0_s → J/ψ φ$ is introduced
 - angular distribution of the two vector-mesons in the final state

Proper time error [ps]

☆ Physics parameters:

- extracted using an "unbinned maximum" likelihood fit to
 - · the proper time
 - · the mass distribution
 - and the transversity angle for $B_s^0 \rightarrow J/\psi \phi$
- \Rightarrow Fit simultaneously maximized with the control sample $B^0_s \to D^-_s \pi^+$, which allows the determination of Δm_s , $\Delta \Gamma_s / \Gamma_s$, ω

Fit Procedure for $B^{0}_{s} \rightarrow J/\psi \phi$

- 1. The mass distributions are fitted and the per-event signal probability is determined, based on the reconstructed mass
- 2. The sidebands are used to determine the background parameters
- 3. In the signal window, the physics parameters are fitted:

$$\Delta m_s$$
, $\Delta \Gamma_s / \Gamma_s$, $1/\Gamma_s$, ω , ϕ_s and R_T

- \Rightarrow Determined by $B_s^0 \to J/\psi \phi$ and $B_s^0 \to D_s^- \pi^+$
- ☆ Likelihood:

$$\mathcal{L}_{\theta_{tr}} = R_T \frac{1 - \cos^2 \theta_{tr}}{2} + (1 - R_T)(1 + \cos^2 \theta_{tr})$$

☆ 1000 toy experiments, each corresponding to 1 year of LHCb, are performed.

Expected Sensitivities for ϕ_s

For one given final state

Time-dependent CP asymmetry

$$\mathcal{A}_{B_s^0 \to J/\psi \phi}^{obs,CP}(t) = -(1-2\omega) \frac{\eta_f \sin(\phi_s) \sin(\Delta m_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2}) - \eta_f \cos(\phi_s) \sinh(\frac{\Delta \Gamma_s t}{2})}$$

- \Rightarrow B⁰_s \rightarrow J/ ψ η , B⁰_s \rightarrow $\eta_c \phi$: increase the sensitivity to ϕ_s
 - Decays to pure CP-eigenstates (CP-even)
 - Same physics, but no angular analysis needed

Sensitivity (1 year)	$\sigma(\Delta\Gamma_s/\Gamma_s)$	$\sigma(\phi_s)$ [rad]
$B^{0}_{s} \rightarrow J/\psi \phi$	0.018	0.06
$B_s^0 \rightarrow J/\psi \eta$	~ 0.025	~ 0.1
$B_s^0 \rightarrow \eta_c \phi$	~ 0.025	~ 0.1
Combined ϕ_s sensitivity		~ 0.05

Preliminary results

- \Rightarrow Statistical sensitivity to φ_s after five years of LHCb data taking
 - $\rightarrow \sigma(\phi_s) \sim 0.02$, with $\phi_s \sim 0.04$ in the SM

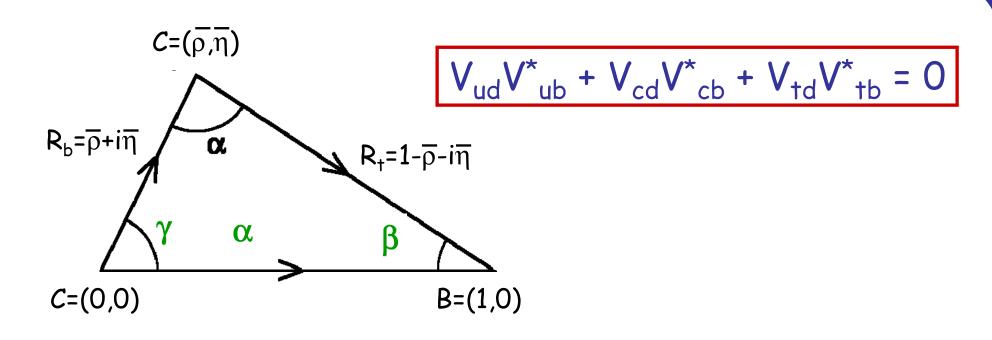
Summary

- ☆ We have presented the way to extract the phases and frequencies at LHCb using the channels:
 - $\quad \mathsf{B}^0 \to \mathsf{J}/\psi \; \mathsf{K}^{\star_0}, \; \mathsf{B}^0 \to \mathsf{J}/\psi \; \mathsf{K}^0_{\;s}, \; \mathsf{B}^0_{\;s} \to \mathsf{D}^{\scriptscriptstyle -}_{\;s} \; \pi^{\scriptscriptstyle +}, \; \mathsf{B}^0_{\;s} \to \mathsf{J}/\psi \; \emptyset, \; \mathsf{B}^0_{\;s} \to \mathsf{J}/\psi \; \eta, \; \mathsf{B}^0_{\;s} \to \eta_c \phi$
- ☆ The sensitivities after one year to the parameters of interest are:
 - $-\Delta m_s > 5\sigma$ for $\Delta m_s < 68 \text{ ps}^{-1}$
 - $\sigma_{LHCb}(\sin 2\beta) \sim 0.022$ (in 2006, world average: ~0.02)
 - $\sigma_{LHCb}(\sin\phi_s) \sim 0.05$
- ☆ LHCb contribution to these parameters (after one year of running):
 - Reduce $sin2\beta$ uncertainties
 - Measure very precisely $\Delta m_s \rightarrow$ First steps in B_s -mixing physics
 - If Δm_s is within the SM expectations, no need of 2fb-1 to measure it
 - Determine $\sin \phi_s$
 - to 2σ within 5 years if SM
 - to 4σ within 1 year if $\sin \phi_s \sim \lambda$

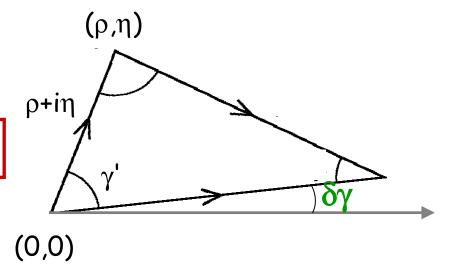
 B_s^0 - B_s^0 system is a prime candidate for the discovery of new physics

BACK-UP SLIDES

BKP: Measurements of the Unitary Triangle



- α B \rightarrow ρ π gives access to sin2 α as well as B \rightarrow $\pi\pi$ but the last one requires the knowledge of the "penguin pollution", which can be extracted from B \rightarrow K π .
- The B°-B° mixing phase ϕ_B (= 2β) can be extracted from $B \rightarrow J/\psi K^0_s$ and similar channels. Also $B \rightarrow \phi K^0_s$ allows the measurement of 2β but it appears in a penguin loop. This difference can show signs of a new physics if both measurement don't give the same results.
- This angle cannot be measured directly but it can be extracted from the $B \rightarrow D^*\pi$ channel, which depend on $\gamma + \phi_B$ using ϕ_B from the measurement described above, or from $B_s \rightarrow D_s K$ which is sensitive to $\gamma + \phi_{Bs}$.
- δγ The B_s mixing phase ϕ_{Bs} is equal to $-2\delta\gamma$ and can be extracted from $B^0_s \rightarrow J/\psi\eta$ or $B^0_s \rightarrow J/\psi\phi$.
- $|R_b|$ This is the length of the CA side of the unitary triangle, It corresponds to the ratio $|V_{ub}|/|V_{cb}|$. Both the numerator and the denominator can be obtained from inclusive semileptonic B decays.
- $|R_t|$ This is the most difficult element to measure. $|R_t|=1/\lambda^*|V_{td}|/|V_{cd}|$ in which the problematic therm is V_{td} . At the LHC the most efficient way to extract it is through the ratio of the branching fraction of $B \rightarrow IIX_d$ and $B \rightarrow IIX_s$, which is $|V_{td}|^2/|V_{cd}|^2(1+corrections)$ and thus requires $|V_{ts}|$ known.



BKP: Unitary Triangles

$$V_{ud}^*V_{td} + V_{us}^*V_{ts} + V_{ub}^*V_{tb} = 0$$

BKP: Tagging Power Characterisation

- ☆ The measured asymmetry is diluted by the wrong tag fraction.
- ☆ The tagging efficiency is also important (no tags means no physics)
- ☆ The best combination of these values arises when looking at the statistical uncertainty of the real asymmetry:

$$\mathcal{A} = \frac{\mathcal{A}^{m}}{1 - 2\omega} \quad \Rightarrow \quad \sigma_{\mathcal{A}} = \frac{\sigma_{\mathcal{A}^{m}}}{1 - 2\omega}$$

$$\mathcal{A}^{m} = \frac{R^{m} - \bar{R}^{m}}{R^{m} + \bar{R}^{m}} \quad \Rightarrow \quad \sigma_{\mathcal{A}^{m}}^{2} = \left(\frac{\partial \mathcal{A}^{m}}{\partial R^{m}}\right)^{2} \sigma_{R^{m}}^{2} + \left(\frac{\partial \mathcal{A}^{m}}{\partial \bar{R}^{m}}\right)^{2} \sigma_{\bar{R}^{m}}^{2}$$

$$\sigma_{\mathcal{A}^{m}}^{2} = \frac{4R^{m}\bar{R}^{m}}{(R^{m} + \bar{R}^{m})^{3}}$$

At this point, one should note that: $1-\mathcal{A}^{m2}=\frac{4R^m\bar{R}^m}{(R^m+\bar{R}^m)^2}$

Thus:
$$\sigma_{\mathcal{A}^m}^2 = \frac{1 - \mathcal{A}^{m2}}{R^m + \bar{R}^m} = \frac{1 - \mathcal{A}^{m2}}{N^m} = \frac{1 - \mathcal{A}^{m2}}{\epsilon_{tag}N}$$

$$\sigma_{\mathcal{A}} = \frac{\sqrt{1 - \mathcal{A}^{m2}}}{\sqrt{\epsilon_{tag}}\sqrt{N}(1 - 2\omega)} \propto \frac{1}{\sqrt{\epsilon_{tag}}(1 - 2\omega)}$$

Which states that we need to maximize the effective tagging efficiency

BKP: Angular distribution

- \Rightarrow In B⁰_s \Rightarrow J/ ψ ϕ the final state is an admixture of CP eigenstates
 - f = 0, ||: CP-even configuration, $\eta_f = +1$
 - $f = \bot$: CP-odd configuration, $\eta_f = -1$
- \Rightarrow Linear polarization amplitudes corresponding to the different configurations are introduced (hep-ph 9804293, hep-ph 0012219): $A_f(t)$ for $f=0, ||, \perp$
 - The fraction of CP-odd is defined as $R_T = |A_1(0)|^2 / \sum_f |A_f(0)|^2 \sim 20\%$
- \Rightarrow Each of the $|A_f(t)|^2$ corresponds to an ordinary decay rate of a pure CP eigenstate for a $\overline{b} \rightarrow \overline{c} c \overline{s}$ transition (for a given η_f value)
- \Rightarrow Assuming that $\cos(\phi_s) \approx 1$, we get the following analytical decay rates
 - For initially pure B_s^0

$$|A_f(t)|^2 = |A_f(0)|^2 \left[e^{-\Gamma_{\rm L}t} + e^{-\Gamma_s t} \sin(\phi_s) \sin(\Delta M_s t) \right], \quad f = 0, \|$$

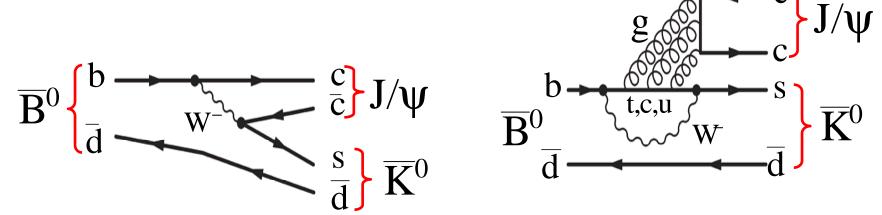
$$|A_{\perp}(t)|^2 = |A_{\perp}(0)|^2 \left[e^{-\Gamma_{\rm H}t} - e^{-\Gamma_s t} \sin(\phi_s) \sin(\Delta M_s t) \right]$$

- For initially pure $\overline{B0}_s$

$$\begin{aligned} \left| \bar{A}_{f}(t) \right|^{2} &= |A_{f}(0)|^{2} \left[e^{-\Gamma_{L}t} - e^{-\Gamma_{s}t} \sin(\phi_{s}) \sin(\Delta M_{s}t) \right], \quad f = 0, \| \\ \left| \bar{A}_{\perp}(t) \right|^{2} &= |A_{\perp}(0)|^{2} \left[e^{-\Gamma_{H}t} + e^{-\Gamma_{s}t} \sin(\phi_{s}) \sin(\Delta M_{s}t) \right] \end{aligned}$$

Note: there is no CP violation in the decay rates

Systematic uncertainties _



- The systematic errors due to acceptance, detection efficiency, decaytime resolution, production asymmetries, tagging performance and trigger efficiency must be well understood.
- ☆ Possible sources of systematic uncertainty:
 - Asymmetry of b vs b production
 - Detector efficiencies which depend on charge
 - can bias tagging efficiencies
 - can fake CP asymmetries
 - CP asymmetry also in background processes
- Alternate runs, swapping the orientation if the magnetic field
- ☆ Use control samples available with high statistics:
 - $B_s \rightarrow D_s \pi$ 80k events/year
 - $B^0 \rightarrow J/\psi K^*$ 670k events/year
 - $B^{\pm} \rightarrow J/\psi K^{\pm}$ 1700k events/year
 - → Control sample sometimes too different from the signal sample !!!
- ☆ Study CP asymmetries in the B mass side bands

BKP: Are we sure that $S(J/\psi K_S) = \sin(2\beta)$??

$$A (B \to J/\psi K) = \underbrace{V_{cb}V_{cs}^*}_{\propto \lambda^2} (T + P^c - P^t) + \underbrace{V_{ub}V_{us}^*}_{\propto \lambda^4} (P^u - P^t)$$

$$V = \begin{pmatrix} V_{\rm ud} & V_{\rm us} \\ V_{\rm cd} & V_{\rm cs} \\ V_{\rm td} & V_{\rm ts} \end{pmatrix} \begin{pmatrix} V_{\rm ub} \\ V_{\rm cb} \\ V_{\rm tb} \end{pmatrix}$$

$$V_{ub}V_{us}^{*} + V_{cb}V_{cs}^{*} + V_{tb}V_{ts}^{*} = 0$$

Leading penguin contribution has same weak phase as tree

Extraction of $sin(2\beta)$ from $J/\psi K_S$ is "theoretically clean"

BKP: Monte Carlo simulation

- ☆ Physics potential is estimated using "Data challenges", i.e. "big" number of simulated events
- ☆ 2003: 67M events
 - 10M bb events (~4 minutes of data taking!)
 - Pythia, QQ, GEANT3
- ☆ 2004: 180M events simulation and analysis in a distributed way (Grid)
 - Started in May, already >50M events produced
 - Pythia, EvtGen, GEANT4
 - >3000 jobs running in parallel all over the world
- Digitization, trigger and reconstruction are simulated using full detector response, based on test beam data