Status and Phenomenology of the Standard Model

- The new standard model
- Experimental tests, unique features, anomalies, hints of new physics
 - Precision tests
 - Higgs
 - Heavy quarks
 - Neutrinos
 - FCNC and EDMs
 - Astrophysics and cosmology
- Theoretical problems
- Perspective

The New Standard Model

• Standard model, supplemented with neutrino mass (Dirac or Majorana):

 $SU(3) imes \underbrace{SU(2) imes U(1)}_{ ext{focus of talk}} imes ext{classical relativity}$

• Mathematically consistent field theory of strong, weak, electromagnetic interactions

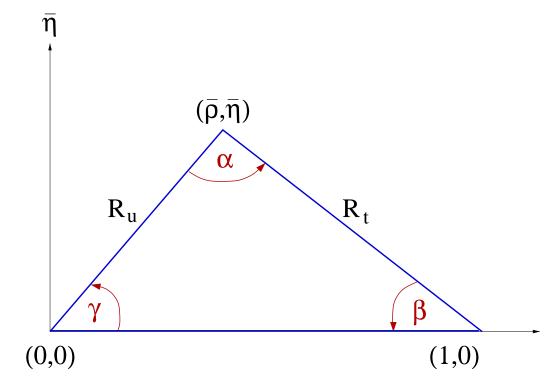
- Correct to first approximation down to 10^{-16} cm
- Complicated, free parameters, fine tunings \Rightarrow must be new physics

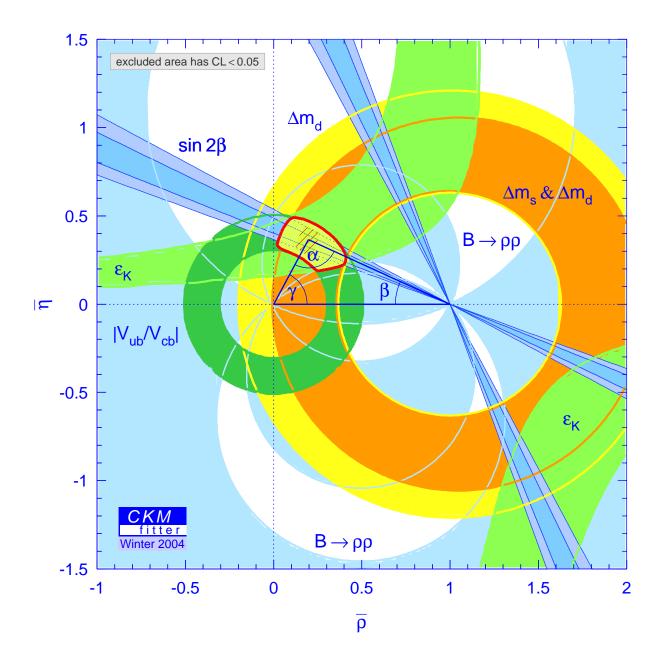
- Many special features usually not maintained in BSM
 - $m_{\nu} = 0$ in old standard model (need to add singlet fermion and/or triplet Higgs and/or higher dimensional operator (HDO))
 - Yukawa coupling $h \propto gm/M_W \Rightarrow$ flavor conserving and small for light fermions (partially maintained in MSSM and simple 2HDM)
 - No FCNC at tree level (Z or h); suppressed at loop level (SUSY loops; Z' from strings, DSB)
 - Suppressed off-diagonal QP; highly suppressed diagonal (EDMs) (SUSY loops, soft parameters, exotics)
 - $-B, L \text{ conserved perturbatively } (B L \text{ non-perturbatively}) \\ (GUT (string) interactions, <math>\mathcal{R}_p)$
 - New TeV scale interactions suggested by top-down (Z', exotics, extended Higgs)

The Weak Charged Current

Fermi Theory incorporated in SM and made renormalizable

CKM matrix for F = 3 involves 3 angles and 1 CP-violating phase (after removing unobservable q_L phases) (new interations involving q_R could make observable)


$$V = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{td} & V_{td} \end{array}
ight)$$


Extensive studies, especially in B decays, to test unitarity of V as probe of new physics and test origin of CP violation

Need additional source of CP breaking for baryogenesis

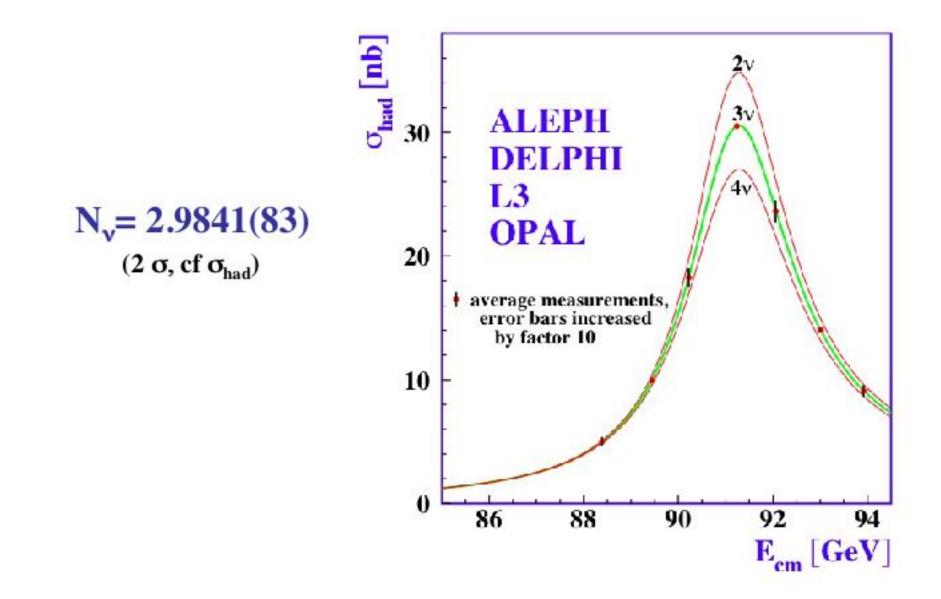
Physics at LHC (July 16, 2004)

- Overconstrain unitarity triangle as test of SM
- Babar, Belle: $\sin 2\beta = 0.736 \pm 0.049$ from $B_d^0(t) \rightarrow J/\psi K_S$ (little theory error)
- α, γ harder
- Anomalies in electroweak penguins?

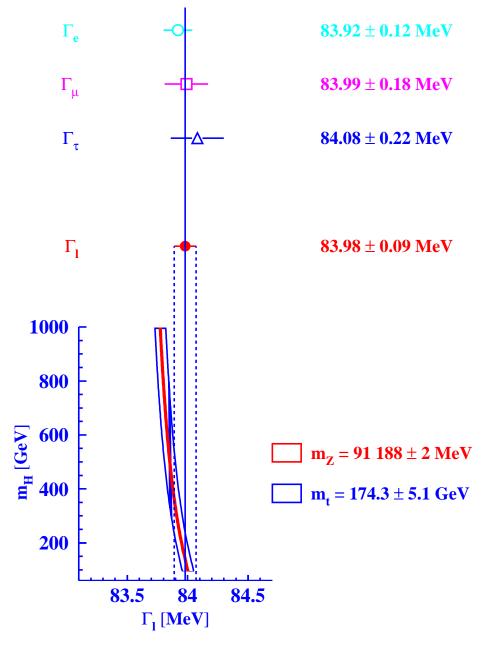
Paul Langacker (Penn)

The Weak Neutral Current

Prediction of $SU(2) \times U(1)$


WNC discovered 1973: Gargamelle at CERN, HPW at FNAL

Tested in many processes: $\nu e \rightarrow \nu e$, $\nu N \rightarrow \nu N$, $\nu N \rightarrow \nu X$; $e^{\uparrow \downarrow} D \rightarrow eX$; atomic parity violation; e^+e^- , Z-pole reactions


WNC, W, and Z are primary test/prediction of electroweak model

The LEP/SLC Era

- Z Pole: $e^+e^- \rightarrow Z \rightarrow \ell^+\ell^-, \ q\bar{q}, \ \nu\bar{\nu}$
 - LEP (CERN), $2 \times 10^7 Z's$, unpolarized (ALEPH, DELPHI, L3, OPAL); SLC (SLAC), 5×10^5 , $P_{e^-} \sim 75$ % (SLD)
- Z pole observables
 - lineshape: M_Z, Γ_Z, σ
 - branching ratios
 - $*~e^+e^-,\mu^+\mu^-, au^+ au^-$
 - $* q\bar{q}, c\bar{c}, b\bar{b}, s\bar{s}$
 - $* \
 u ar{
 u} \Rightarrow N_
 u = 2.9841 \pm 0.0083$ if $m_
 u < M_Z/2$
 - asymmetries: FB, polarization, P_{τ} , mixed
 - lepton family universality

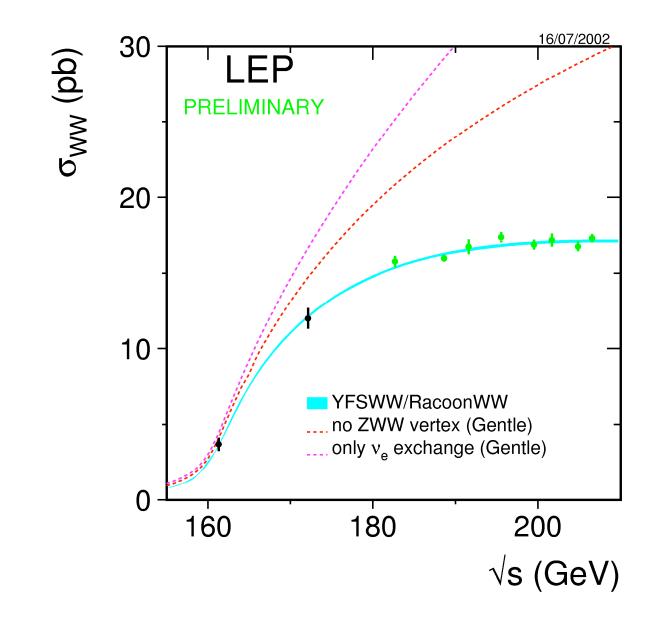
LEP averages of leptonic widths

Paul Langacker (Penn)

Winter 2004

	Measurement	Fit	$ O^{\text{meas}} - O^{\text{fit}} / \sigma^{\text{meas}}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	0.02768	
	91.1875 ± 0.0021	91.1873	
Γ _z [GeV]	2.4952 ± 0.0023	2.4965	
$\sigma_{\sf had}^0$ [nb]	41.540 ± 0.037	41.481	
R _I	20.767 ± 0.025	20.739	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01642	
A _l (P _τ)	0.1465 ± 0.0032	0.1480	
R _b	0.21638 ± 0.00066	0.21566	
R _c	0.1720 ± 0.0030	0.1723	
A ^{0,b}	0.0997 ± 0.0016	0.1037	
A ^{0,c} _{fb}	0.0706 ± 0.0035	0.0742	
A _b	0.925 ± 0.020	0.935	-
A _c	0.670 ± 0.026	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1480	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.425 ± 0.034	80.398	
Γ _w [GeV]	$\textbf{2.133} \pm \textbf{0.069}$	2.094	
m _t [GeV]	178.0 ± 4.3	178.1	
			0 1 2 3

Gauge Self-Interactions


Three and four-point interactions predicted by gauge invariance

Indirectly verified by radiative corrections, α_s running in QCD, etc.

Strong cancellations in high energy amplitudes would be upset by anomalous couplings

$$e^+ \rightarrow v_e \gamma, z^0 \rightarrow w^+$$

Tree-level diagrams contributing to $e^+e^- \rightarrow W^+W^-$

The Precision Program

- WNC, Z, Z-pole, W, m_t
- Implications
 - SM correct and unique to zeroth approx. (gauge principle, group, representations)
 - SM correct at loop level (renorm gauge theory; m_t , α_s , M_H)
 - TeV physics severely constrained (unification vs compositeness)
 - Precise gauge couplings (gauge unification)

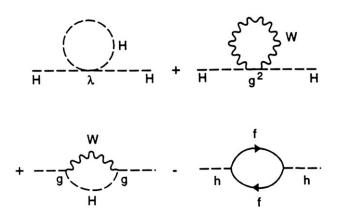
Problems with the Standard Model

Lagrangian after symmetry breaking:

$$egin{aligned} \mathcal{L} &= & L_{ ext{gauge}} + L_{ ext{Higgs}} + \sum_i ar{\psi}_i \left(i \; \partial \!\!\!/ - m_i - rac{m_i H}{
u}
ight) \psi_i \ &- & rac{g}{2\sqrt{2}} \left(J_W^\mu W_\mu^- + J_W^{\mu\dagger} W_\mu^+
ight) - e J_Q^\mu A_\mu - rac{g}{2\cos heta_W} J_Z^\mu Z_\mu \end{aligned}$$

Standard model: $SU(2) \times U(1)$ (extended to include ν masses) + QCD + general relativity

Mathematically consistent, renormalizable theory


Correct to 10^{-16} cm

Physics at LHC (July 16, 2004)

However, too much arbitrariness and fine-tuning: O(27) parameters (+ 2 for Majorana ν), and electric charges

- Gauge Problem
 - complicated gauge group with 3 couplings
 - charge quantization ($|q_e| = |q_p|$) unexplained
 - Possible solutions: strings; grand unification; magnetic monopoles (partial); anomaly constraints (partial)
- Fermion problem
 - Fermion masses, mixings, families unexplained
 - Neutrino masses, nature?
 - CP violation inadequate to explain baryon asymmetry
 - Possible solutions: strings; brane worlds; family symmetries; compositeness; radiative hierarchies. New sources of CP violation.

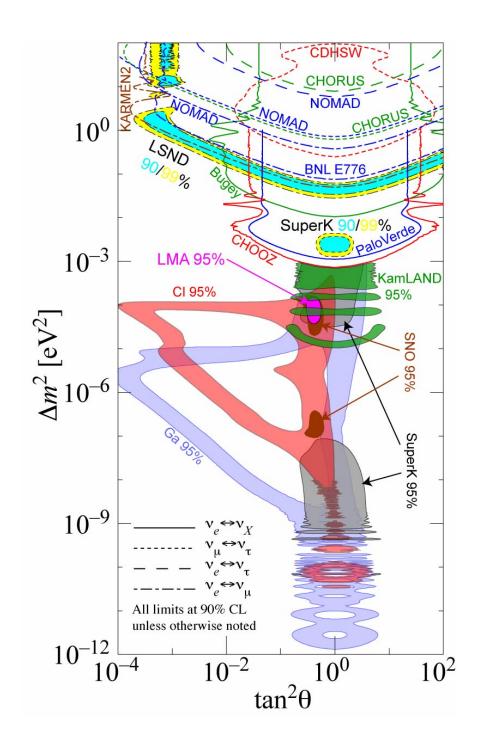
- Higgs/hierarchy problem
 - Expect $M_H^2 = O(M_W^2)$
 - higher order corrections: $\delta M_{H}^{2}/M_{W}^{2} \sim 10^{34}$

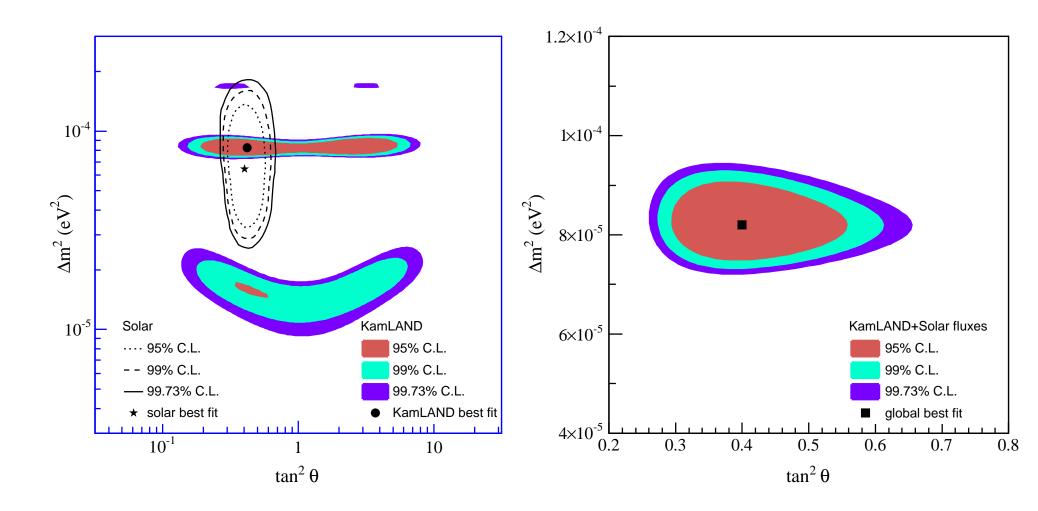
Possible solutions: supersymmetry; dynamical symmetry breaking; large extra dimensions; Little Higgs

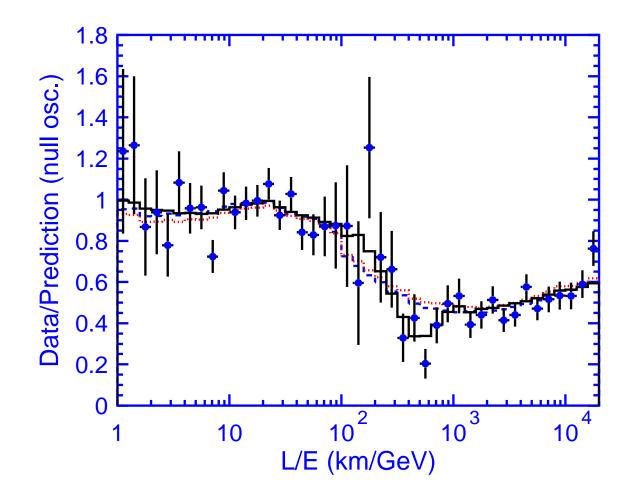
- Strong CP problem
 - Can add $\frac{\theta}{32\pi^2}g_s^2F\tilde{F}$ to QCD (breaks, P, T, CP)
 - $d_N \Rightarrow heta < 10^{-9}$
 - but $\delta hetaert_{
 m weak} \sim 10^{-3}$
 - Possible solutions: spontaneously broken global U(1) (Peccei-Quinn) \Rightarrow axion; unbroken global U(1) (massless u quark); spontaneously broken CP + other symmetries

Physics at LHC (July 16, 2004)

• Graviton problem


- gravity not unified
- quantum gravity not renormalizable
- cosmological constant: $\Lambda_{
 m SSB}=8\pi G_N \langle V
 angle>10^{50}\Lambda_{
 m obs}~(10^{124}$ for GUTs, strings)
- Possible solutions:
 - * supergravity and Kaluza Klein unify
 - * strings yield finite gravity.
 - * **Λ**?


(Nearly) Unique Features of the *old* Standard Model


 $m_{\nu} = 0$ in old standard model (need to add singlet fermion and/or triplet Higgs and/or higher dimensional operator (HDO))

- Oscillation experiments confirm non-zero masses, LMA, SSM (also helioseismology)
 - Excluded sterile, RSPF, new interactions as *dominant*
 - Oscillation dip observed (further constrains/excludes alternatives)

- 3 ν Patterns
- Solar: LMA (SNO, Kamland)
- $\Delta m^2_\odot \sim 8{ imes}10^{-5}~{
 m eV}^2$ for LMA
- Atmospheric: $\Delta m^2_{
 m Atm} \sim 3 imes 10^{-3} \, {\rm eV^2}$, nearmaximal mixing
- Reactor: U_{e3} small

Mixings: let $\nu_{\pm} \equiv \frac{1}{\sqrt{2}} (\nu_{\mu} \pm \nu_{\tau})$:

Hierarchical pattern

- Analogous to quarks, charged leptons
- $\beta\beta_{0\nu}$ rate very small

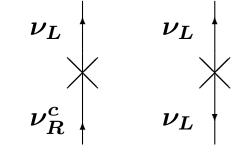
Inverted quasi-degenerate pattern

- $\beta \beta_{0\nu}$ if Majorana
- May be radiative unstable

Outstanding issues

- Dirac or Majorana
- Distinguish by $\beta\beta_{0\nu}$, at least for inverted, degenerate. Observation?

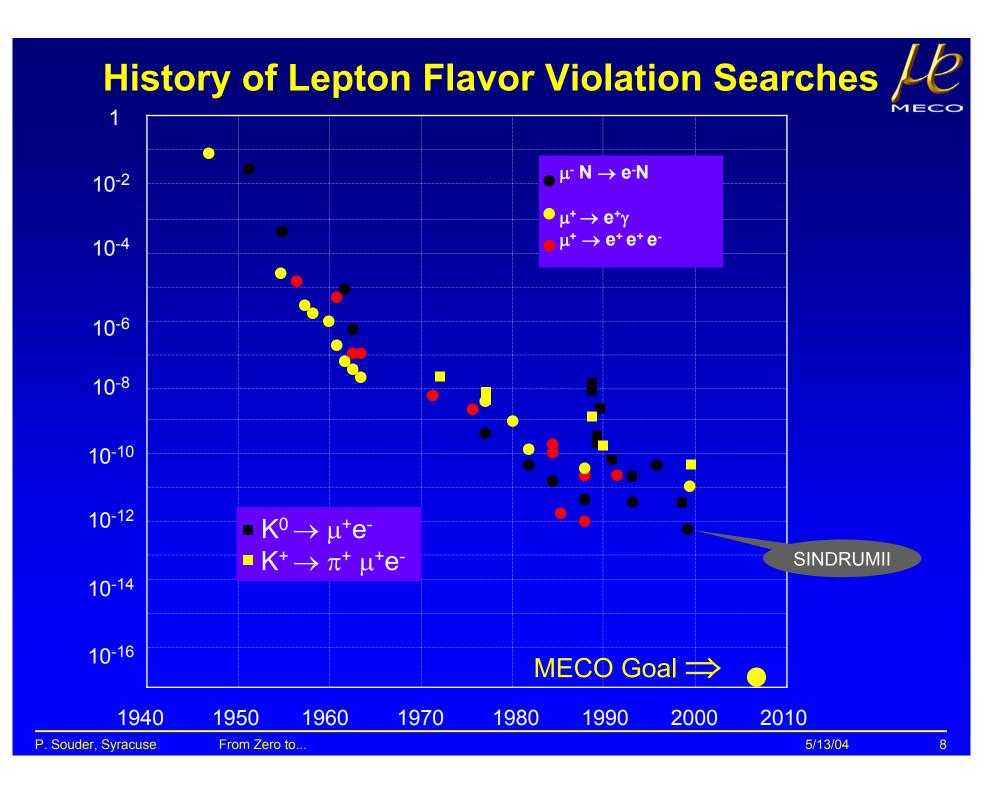
Dirac Mass

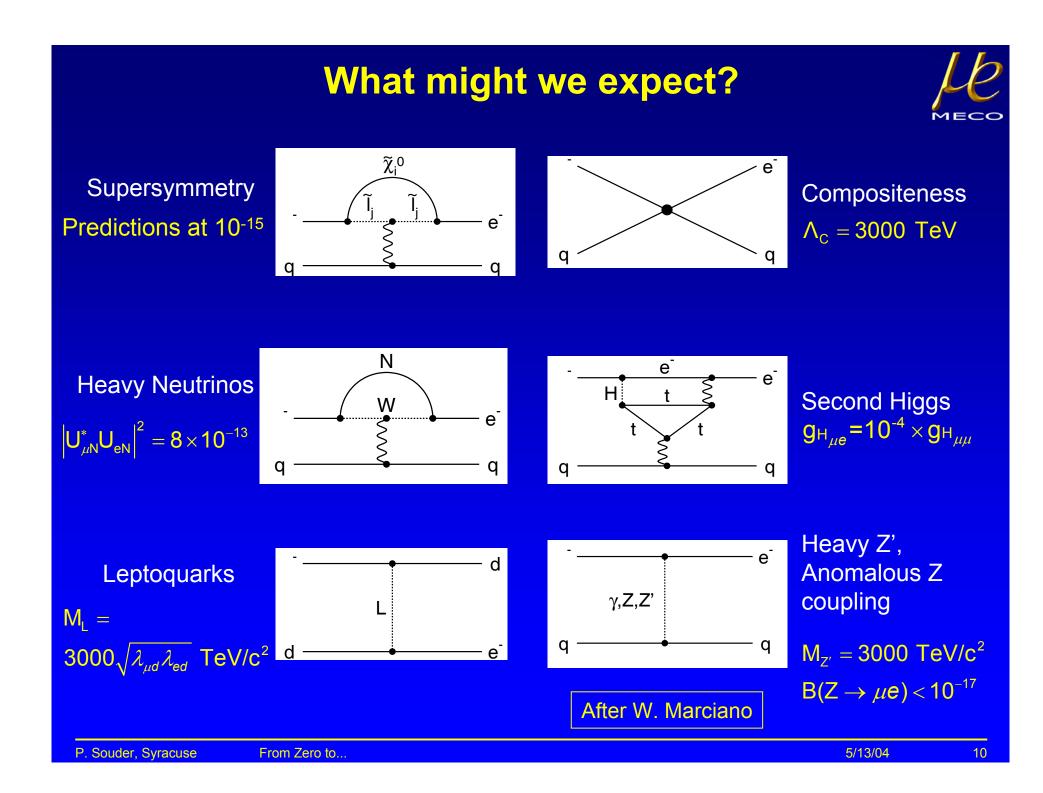

- Connects distinct Weyl spinors (usually active to sterile): $(m_D \bar{\nu}_L N_R + h.c.)$
- 4 components, $\Delta L = 0$
- $\Delta I = \frac{1}{2} \rightarrow$ Higgs doublet
- Why small? LED? HDO?

$$egin{array}{c|c}
u_L & v = \langle \phi
angle \ h & \cdots & 0 \ N_R & m_D = hv \end{array}$$

Physics at LHC (July 16, 2004)

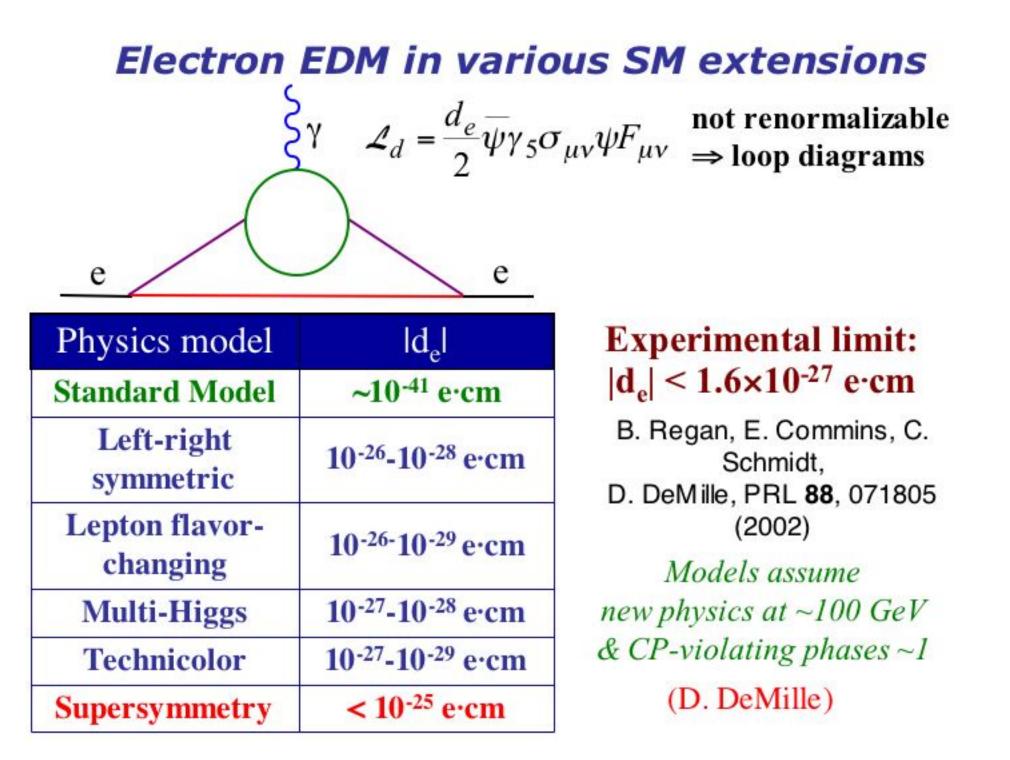
Majorana Mass


- Connects Weyl spinor with itself: $\frac{1}{2}(m_T \bar{\nu}_L \nu_R^c + h.c.)$ (active); $\frac{1}{2}(m_S \bar{N}_L^c N_R + h.c.)$ (sterile)
- 2 components, $\Delta L=\pm 2$
- Active: $\Delta I = 1
 ightarrow {
 m triplet}$ or seesaw
- Sterile: $\Delta I = 0 \rightarrow \text{singlet or}$ bare mass



- Scale of neutrino masses: 0.05 eV $< m_{\nu} <$ O(0.3 eV). Probe by β decay (KATRIN), cosmology, $\beta\beta_{0\nu}$
- Type of hierarchy: $\beta\beta_{0\nu}$
- LSND? ⇒Additional (sterile) neutrino(s) which mix with ordinary. MiniBooNE.
- Leptogenesis?

Flavor Changing Neutral Currents


- In SM: Yukawa coupling $h \propto gm/M_W \Rightarrow$ flavor conserving and small for light fermions (partially maintained in MSSM and simple 2HDM)
- In SM: no FCNC at tree level (Z or h); suppressed at loop level
- \bullet Violated in almost all extensions, including SUSY loops; Z^\prime from strings, DSB
- Hard to give precise expectations, but critical to search
- Third family transitions (rare B, τ) often largest, but small induced effects in first two families (μ , K decays) may be more sensitive (MEG at PSI, MECO at BNL, PRIME at JHF)

CP Violation

- Larger in SUSY (loops, soft parameters) unless tuning or cancellations
- Larger in other extensions, e.g., singlet scalars in Z' models (but may be hidden)
- B decays, leptonic $\mathcal{Q}P$, EDMs
- Need additional QP for baryogenesis

Baryon and Lepton Number Violation

- SM: B, L conserved perturbatively (B L non-perturbatively)
- Violated in BSM, e.g., by GUT (string) interactions or \mathcal{R}_p
- Proton decay expected at some level in many extensions, especially Planck scale
- \mathcal{L} needed for Majorana neutrino masses $\Rightarrow \beta \beta_{0\nu}$
- New B and/or L invoked in some baryogenesis schemes

mode $p \rightarrow e^+ + \pi_a^0$	expos (ktï y 92	ure ('r) (40	€ <mark>₿</mark> %) [™] 0	observed event 0.2	B.G. 54		[······	·····	
$\mathbf{p} \rightarrow \mu^+ + \pi^0$	92	32	0	0.2	43	$\mathbf{p} \rightarrow \mathbf{e}^+ \pi^0$		•	
p → e⁺ + η	92	17	0	0.2	23	e'η e⁺ω			□ ; ▲
p → μ ⁺ + η	92	9	0	0.2	13	$e^+ \rho^0$	•		*
$\mathbf{n} \rightarrow \overline{\mathbf{v}} + \eta$	45	21	5	9	5.6	e ⁺ ρ ⁰ e ⁺ Κ ⁰	_	•	* .
p → e ⁺ + ρ	92	4.2	0	0.4	5.6	ε κ μ [†] π ⁰			*
$\mathbf{p} \rightarrow \mathbf{e}^{\dagger} + \mathbf{\omega}$	92	2.9	0	0.5	3.8	μ + π ⁰		•	
$\mathbf{p} \rightarrow \mathbf{e}^{\dagger} + \mathbf{v}$	92	73	0	0.1	98	μ + η		• 🔳 🗖	*
5 T+ 1 1	92 92	61	0	0.2	82	μ+ω		•	
$\mathbf{p} \rightarrow \mu + \gamma$	92 92	01	U	0.2	02	μ+ ρ ⁰ μ+ Κ ⁰		•	
$\mu \rightarrow \nu + \kappa$	52 ctrum)	34			22 4.2	μ΄Κ΄			*
prompt $\gamma + \mu^2$	·	8.6	0	0.7	11	$\frac{1}{\nabla}\pi^+$			
K ⁺ →π ⁺ π ⁰		6.0	Ō	0.6	7.9	$\overline{\mathbf{v}} \rho^+$	•		
$1 \rightarrow \overline{v} + K^0$	92				2.0	$\overline{\mathbf{v}}\mathbf{K}^{+}$	•	•	;
$\mathbf{K}^{0} \rightarrow \pi^{0} \pi^{0}$		6.9	14	19.2	3.0	$\mathbf{n} \rightarrow \mathbf{e}^{\dagger} \pi^{\dagger}$		•□	
$\mathbf{K}^{0} \rightarrow \pi^{+}\pi^{-}$		5.5	20	11.2	0.8			• •	
p → e⁺ + K°	92				10.7	L μ ⁺ π ⁻			
$\mathbf{K}^{0} \rightarrow \pi^{0} \pi^{0}$		9.2	1	1.1	8.7	$\mu^+ \rho^-$			
$K^0 \rightarrow \pi^+ \pi^-$		7.0	-	0.0	4.0	$\frac{\mu}{\nu} \pi^0$		•	*
2-ring 3-ring		7.9 1.3	5 0	3.6 0.1	4.0 1.7	$\frac{1}{\nabla}\eta$	-	•	^
$\mathbf{n} \rightarrow \mathbf{u}^{+} \mathbf{k}^{0}$	92	1.5	U	0.1	13.9	$\frac{\mathbf{v}}{\mathbf{v}}\mathbf{\omega}$			_ [^]
$\mathbf{p} \rightarrow \mathbf{u}^{+} \mathbf{H}_{\mathbf{K}^{0} \rightarrow \pi^{0} \pi^{0}}^{\mathbf{H}} \mathbf{K}^{0}$	JL	5.4	0	0.4	7.1	$\frac{\mathbf{v}}{\mathbf{v}} 0$		-	🗆 IM
$K^0 \rightarrow \pi^+ \pi^-$		011	Ŭ	011		$\frac{\overline{\mathbf{v}} \rho^{0}}{\overline{\mathbf{v}} \mathbf{K}^{0}}$		• •	• KA
2-ring		7.0	3	3.2	4.9	V K	•	• ×	So
3-ring		2.8	0	0.3	3.7		31	32	33
							10 [°] '	10 [°]	10 Ũ

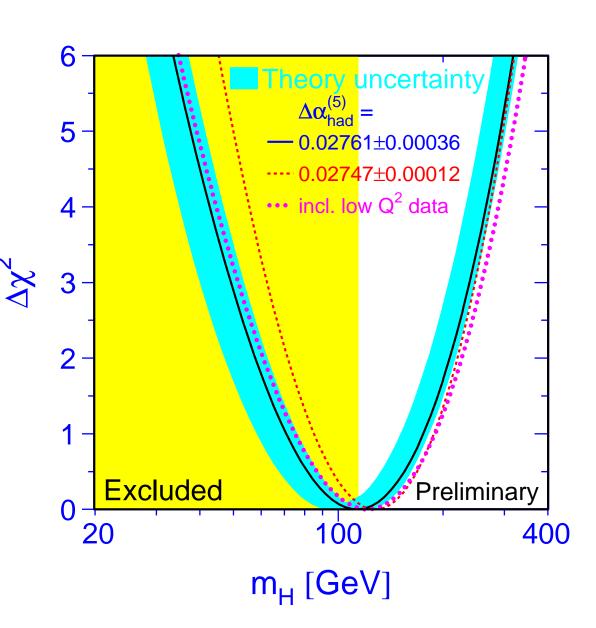
Paul Langacker (Penn)

Soudan2

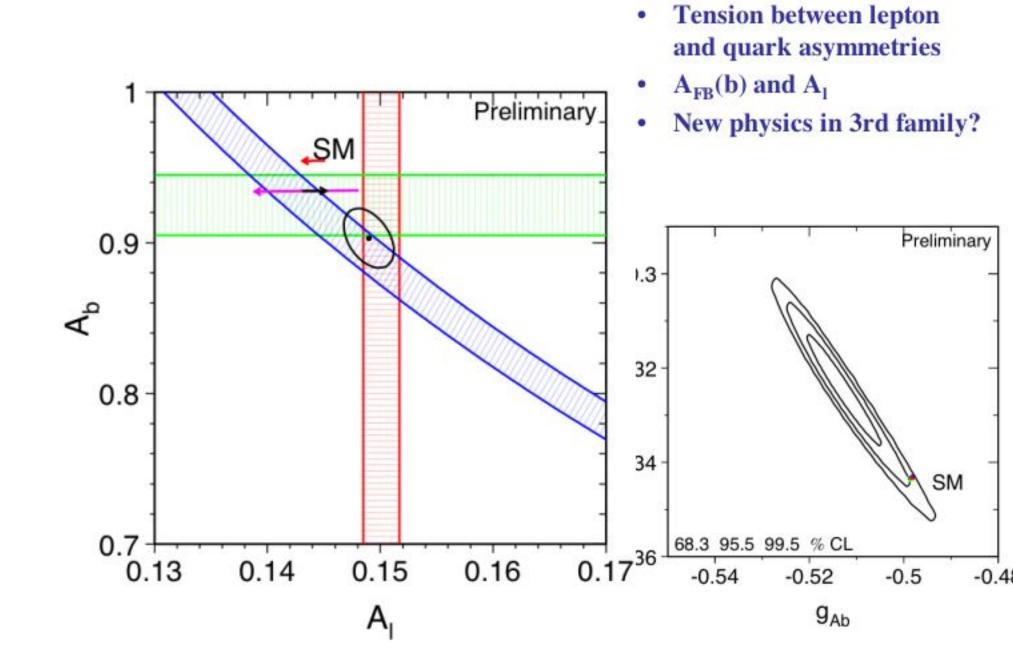
10³⁴

*

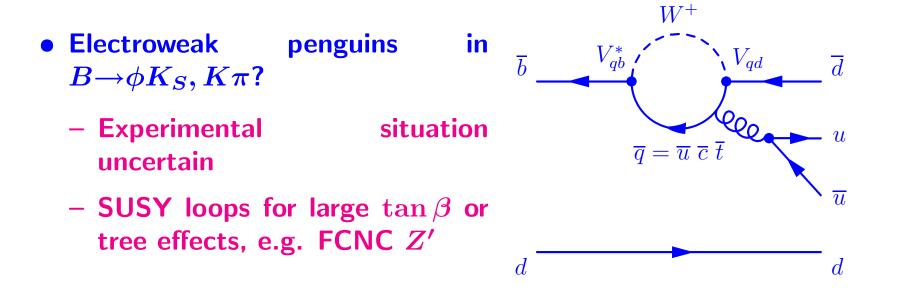
★

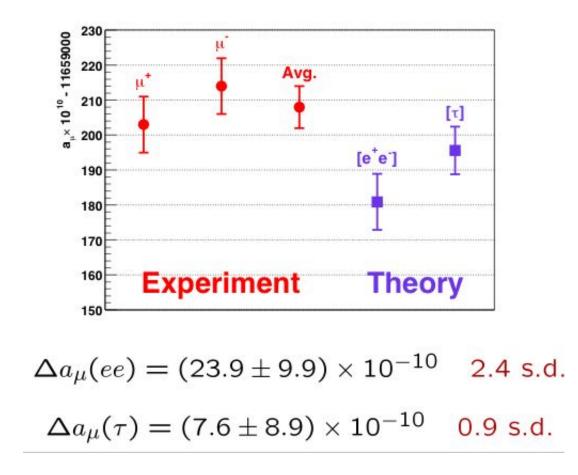

TeV Physics

- New TeV scale interactions suggested by top-down
- Z' or other new interactions
 - Implications for highly non-standard Higgs, FCNC, CDM, baryogenesis
- Exotics
 - Extra Higgs doublets and singlets
 - Exotic quarks and leptons
 - Fractional charges
- Quasi-hidden sectors

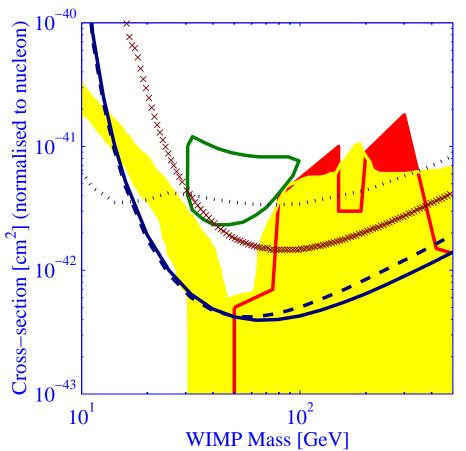

Hints and Anomalies

- Gauge unification in supersymmetric extension
 - If not accident or compensation, severely limits new TeV scale physics
- Precision data suggests light Higgs


- Precision data suggests light Higgs
- $M_H = 113^{+56}_{-40}$ GeV (< 246 GeV at 95% including indirect)
- Consistent with SUSY (but does not prove)
- Has increased due to new D0 m_t value and lower M_W
- A^b_{FB} pulls up, A_l down


Physics at LHC (July 16, 2004)

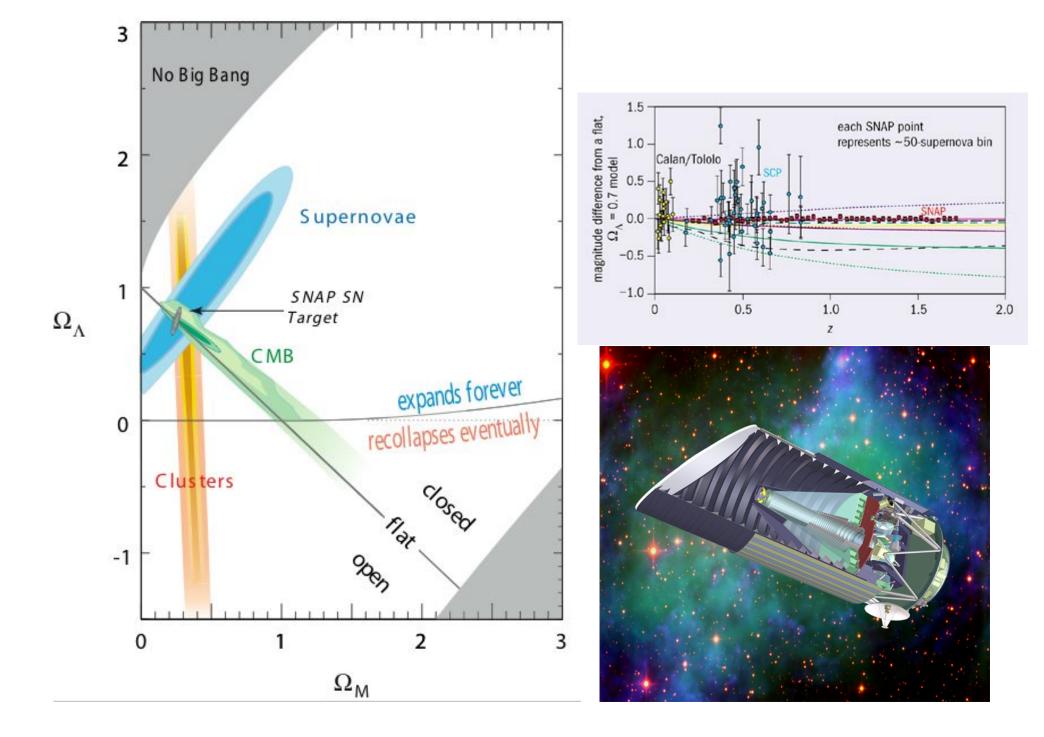
- Atomic parity violation? Now in agreement after complete radiative corrections.
- NuTeV? Unresolved. Likely QCD or structure function issue.


- Anomalous magnetic moment of muon
 - Hadronic vacuum polarization (e^+e^- vs τ decay); light by light
 - If real, then SUSY with large aneta and low masses is possibility

Physics at LHC (July 16, 2004)

CKM Universality

- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 \Delta$
 - PDG 2002: $\Delta = 0.0042 \pm 0.0019$
 - New physics? Constrains v–v_{heavy} explanations of NuTeV
 - Problem in V_{ud}?
 - Superallowed: IV_{ud} =0.9740(5), many checks
 - Neutron: 0.9745 (16) (common structure-independent rad corr)
 - Pion beta decay: 0.9716(39) (new)
 - Problem in V_{us}?
 - BNL E685, KTEV, KLOE but not CERN NA 48

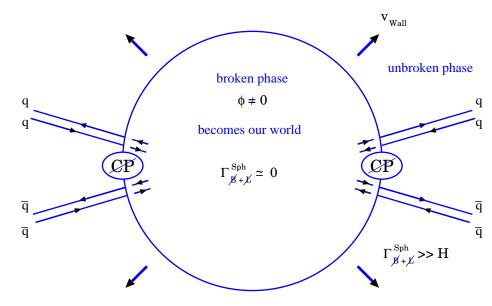


• Dark Matter

- $-\sim 30\%$ matter, mainly dark
- No SM candidates; SUSY LSP if R_P conserved (MSSM tightly constrained); axions

\sim 70% dark energy

- Higgs VeV, QCD vacuum energy in SM, but too large by $\sim 10^{50}$; new fields? quintessence?
- JDEM (SNAP)



Baryogenesis

• Baryon asymmetry $n_B/n_\gamma \sim 6 imes 10^{-10}$

- Possible mechanisms
 - GUT baryogenesis (wiped out by sphalerons for B L=0)
 - Leptogenesis (for heavy right-handed Majorana neutrino in seesaw)
 - Electroweak baryogenesis

- EB requires strong first order transition, $v(T_c)/T_c \gtrsim 1-1.3$ and adequate CP violation in expanding bubble wall
- Absent in SM
- Narrow parameter range in MSSM
- Possible in Z'

(W. Bernreuther, hep-ph/0205279)

Conclusions

- Standard Model is spectacularly successful, but has many parameters, tunings, and unexplained features
- Must be new physics
- Theoretical ideas
 - Strings
 - Grand Unification (canonical or modified)
 - Supersymmetry
 - Top-down remnants (Z', exotics)
 - Large extra dimensions, deconstruction
 - Dynamical symmetry breaking, compositeness, Little Higgs

• Experimental probes

- Hadron colliders: Tevatron, LHC
- Linear collider/CLIC
- FCNC, EDM, heavy quark, precision, neutrino, p decay
- Cosmology/astrophysics
- Tremendous opportunities in particle physics, to develop standard theory valid to the Planck scale