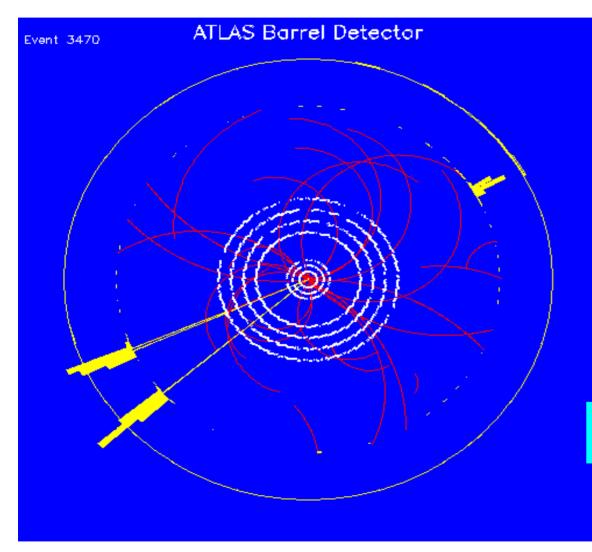
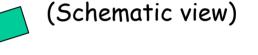
Heavy Lepton Physics in ATLAS


Călin Alexa, CERN

Excited leptons (brief)


- basics
- discovery potential
- Charged heavy leptons
 - signal and background description
 - event selection and discovery potential
 - preliminary results
 - conclusions and future plans

Excited Electron Production at LHC

from Rashid Mehdiyev

Fully simulated •ee*_ +eey pp

E* mass =1000 GeV

O. Çakır, C. Leroy, R.Mehdiyev, A.Belyaev Eur. Phys. J. C30, d01 (2003), 005

from Rashid Mehdiyev

Basics:

- Excited states of fermions can exist if leptons and quarks are not elementary particles but composite.
- Excited fermions are considered as spin=1/2 and isospin=1/2 particles and couple to gauge bosons according to their quantum numbers.
- Both left-handed and right -handed components of excited fermions are week isodoublets,
- SU(3)×SU(2)×U(1) symmetry is still respected.
- > Excited fermions would decay into an ordinary fermion and gauge bosons.

U.Baur, M.Spira, P.Zerwas Phys. Rev. D 42 (1990) 815

$$\mathcal{L}_{int} = rac{1}{2\Lambda} \overline{F}^*_R \sigma^{\mu
u} \left[g f rac{ au^a}{2} W^a_{\mu
u} + g' f' rac{Y}{2} B_{\mu
u} + g_s f_s rac{\lambda_a}{2} G^a_{\mu
u}
ight] F_L + h.c.$$

- Right and left-handed components of the excited form weak isodoublets
- Field-strength tensors associated to gauge fields SU(2), U(1) and SU(3)
- SM couplings
- Coupling strength between f* and bosons from SU(2), U(1) and SU(3)
- Compositeness scale

Couplings of excited leptons to preons (Contact Interactions) can be described by effective 4-fermion Lagrangian

$$L_{contact} = \frac{g_*^2}{2\Lambda^2} j^{\mu} j_{\mu}$$

(a)
$$e^{e^*}$$
 e^* e^* e^*

from Rashid Mehdiyev

$$j_{\mu} = \eta_L \bar{f}_L \gamma_{\mu} f_L + \eta'_L \bar{f}_L^* \gamma_{\mu} f_L^* + \eta''_L \bar{f}_L^* \gamma_{\mu} f_L + (L \longrightarrow R) + h.c.$$

$$g_*^2 = 4\pi$$

(coefficients for left-handed and right-handed currents)

 $\eta_L = 1$ and $\eta_R = 0$

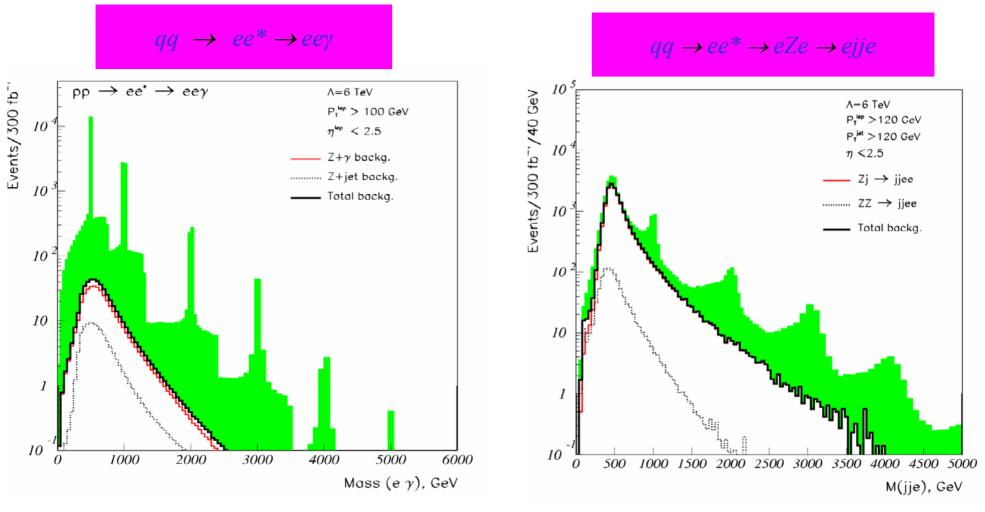
• Excited leptons will decay into a lepton and a gauge boson:

$$L_{transition} = \frac{1}{2\Lambda} \bar{f}_R^* \sigma^{\mu\nu} \left[gf \frac{\tau}{2} \cdot W_{\mu\nu} + g'f' \frac{Y}{2} B_{\mu\nu} \right] f_L + h.c.$$

W and B are the field strength tensors of SU(2) and U(1) gauge fields with gauge structure constants τ and Y; g and g' are the corresponding coupling constants.

Λ - compositeness scale

BG: Z+jet,Z+Z,Z+W

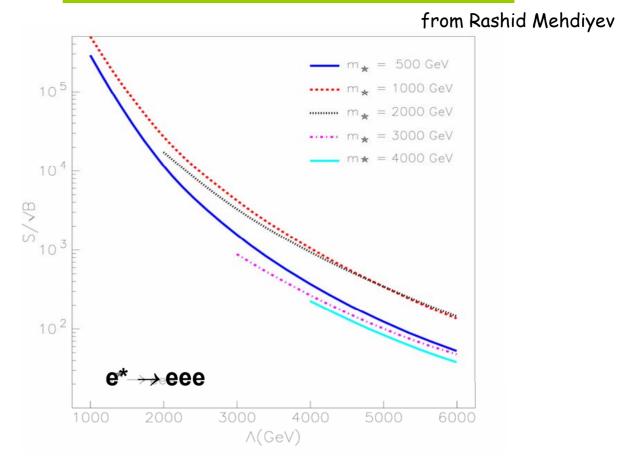

- Signal simulation of excited electrons in contact interactions with CompHep and CompHep + Pythia interface.
- $e^* \rightarrow e\gamma$ BG: Z+ γ , Z+jet
- e*→Ze, Z→ee or Z→jj
- $e^* \rightarrow W_V, W \rightarrow jj$ BG: W+jet,W+W

Backgrounds simulated with Pythia ATLFAST has been used for the detector simulation. All data presented for L=300 fb⁻¹ and the compositeness scale Λ = 6 TeV.

Combined contribution of gauge and contact decays (3-body decays) considered for $e^* \rightarrow Ze$ channel.

Signal significance

from Rashid Mehdiyev


m*,TeV	0.5	1.0	2.0	3.0	4.0	m*,TeV	0.5	1.0	2.0	3.0	4.0
Signal	13700	5281	490	43	5	Signal	2102	2415	636	176	24
S/\sqrt{B}	2385	2104	1044	311	66	S/\sqrt{B}	30	120	105	69	30

Călin Alexa, Physics at LHC, Vienna, 16 July 2004

$qq \rightarrow ee^* \rightarrow eZe \rightarrow eeee$

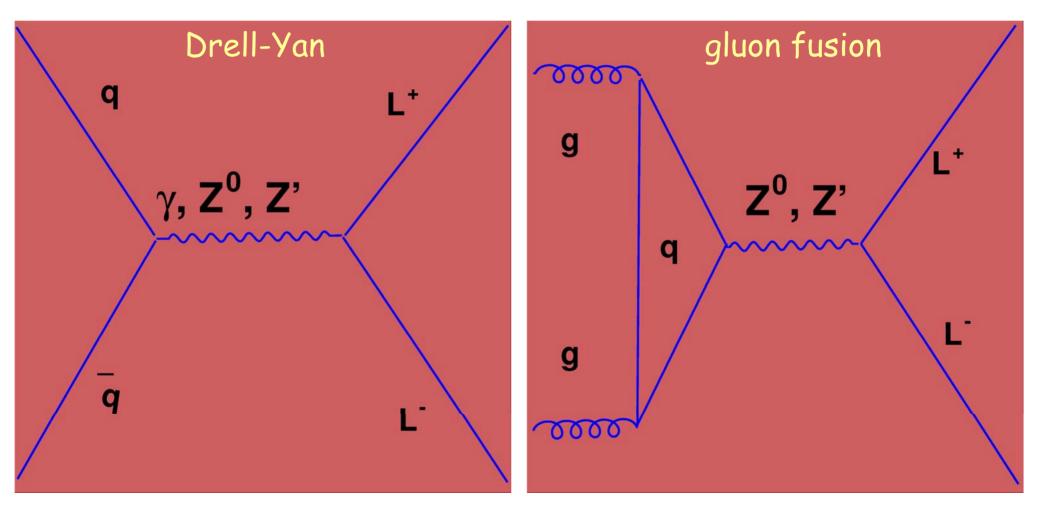
Events/300 fb⁻/40 GeV A=6 TeV 10^{-3} $P_{T}^{lep} > 60 \text{ GeV}$ n^{lep} <2.5 102 $ZZ \rightarrow eeee$ $...... ZW \rightarrow eeei$ $Z\gamma \rightarrow ee\gamma$ Total backg 10 1 10 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 M(eee), GeV $qq \rightarrow ee^* \rightarrow eWv \rightarrow ejjv$ Events/300 fb⁻¹/10 GeV 007 007 ∧=6 TeV P.">200 GeV $P_r^{miss} > 200 G$ W+jet W+W 150 100 50 500 750 250 1250 2000 0 1000 1500 1750 Căl Transverse Mass (jjv), GeV

Signal significances for various Λ

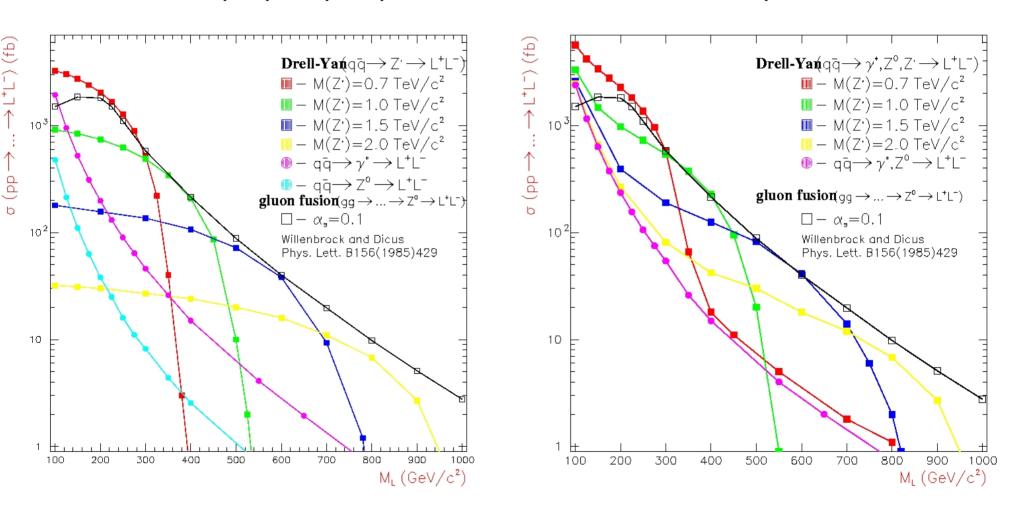
Conclusions

Singly produced excited electrons could be accessible up to mass of 5 TeV at LHC for $\Lambda = 6 \text{ TeV}.$

Charged heavy leptons in ATLAS


beyond the Standard Model predictions for new particles composite models, technicolor models, left-right symmetric models, mirror fermions models, GUT, superstring models, univ. mode?

new fermions


- sequential fermions: the fourth family has the same quantum numbers
- vector singlet (VSM): $\begin{pmatrix} v \\ e \end{pmatrix}_{L}$, e_{R} , v_{R} , L_{L} , L_{R} , N_{L} , N_{R} (NPB342(1990)108) • vector doublet model (VDM): $\begin{pmatrix} N \\ L \end{pmatrix}_{L}$, $\begin{pmatrix} N \\ L \end{pmatrix}_{R}$ (PRD34(1986)2076) • fermion-mirror-fermion model (FMFM): $\begin{pmatrix} N \\ L \end{pmatrix}_{R}$, $(L)_{L}$, $(N)_{L}$ (NPB207(1982)233)

experimental limits

- charged heavy lepton mass M_L > 100 GeV/c² from L3 / LEP
- new neutral heavy gauge boson mass $M_{Z'}$ > 700 GeV/c² from CDF

charged heavy leptons production mechanisms

heavy lepton pair production cross section mass dependence

model: sequential fermions (Standard Model couplings)

decay channels:

 $pp \rightarrow \dots \rightarrow L^{+}L^{-} \rightarrow 2Z^{0} + 2 (e \text{ or } \mu) \text{ and } Z^{0} \rightarrow 2 \text{ jets}$ $pp \rightarrow \dots \rightarrow L^{+}L^{-} \rightarrow 2Z^{0} + 2 (e \text{ or } \mu) \text{ and } Z^{0} \rightarrow 2(e \text{ or } \mu)$ $\blacksquare \text{ B.R. } (L \rightarrow I + Z) = 1/3 \qquad (Z. \text{ Phys. C63 (1994) 317})$

gluon fusion cross section: (Phys. Let. B156 (1985) 429)

$$\left(\frac{\sigma(Z')}{\sigma(Z^0)}\right)_{gg} \approx \left(\frac{M(Z^0)}{M(Z')}\right)^4 \approx 2.9 \times 10^{-4} \quad if \quad M(Z') = 0.7 \text{ TeV/c}^2$$

signal:

two opposite charged isolated electrons or muons

■ low E_T^{miss}

background:

- dilepton *tt* events: $tt \rightarrow bb$ W⁻ W⁺ and W \rightarrow (e or µ) + $v_{(e \text{ or } \mu)}$
- dileptonic and jets: WW+jets, WZ+jets, ZZ+jets, etc.

where Z \rightarrow (e or μ)⁻ + (e or μ)⁺ and W \rightarrow (e or μ)+ $v_{(e \text{ or } \mu)}$

- at least 2 isolated ($e^+ e^-$) or ($\mu^+ \mu^-$) with p_T > 20 GeV ■ at least 4 jets with p_T > 20 GeV
- \blacksquare the candidate leptons were the 2 isolated electrons or muons with the highest p_{T}
- at least one jet with p_T > 100 GeV
 at least one electron or muon with p_T > 150 GeV

■
$$p_T^{miss} < 100 \text{ GeV}$$

■ $m_{(e+e-,\mu+\mu-)} > 200 \text{ GeV/c2}$

Event selection

$$M_{j_1 j_2} - M_{Z^0}^{rec} \left| + \right| M_{j_3 j_4} - M_{Z^0}^{rec} \left| = \min \left(\frac{\Delta R(i - i)}{2} - \sqrt{\Delta R^2} - \frac{\Delta A^2}{2} - \min \right) \right)$$

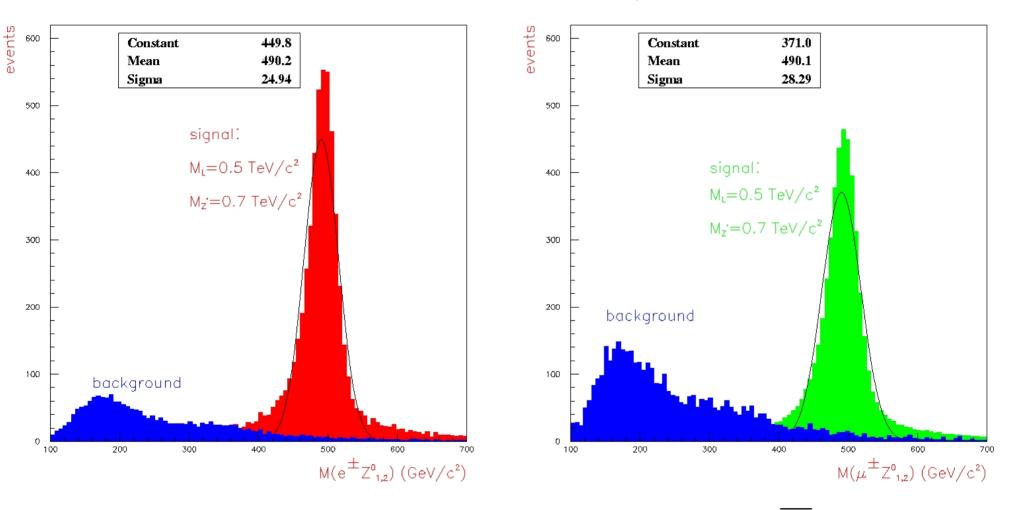
•
$$\Delta R(j_1, j_2) = \sqrt{\Delta \eta_{j_1, j_2}^2 + \Delta \phi_{j_1 j_2}^2} = \min$$

$$M_{Z^0}^{rec} - 3 \sigma_{Z^0}^{rec} \le M_{di-jet} \le M_{Z^0}^{rec} + 3 \sigma_{Z^0}^{rec}$$

$$\square \left| M_{(e,\mu)_{i}^{(\pm)}Z_{j}^{0}} - M_{(e,\mu)_{k}^{(\pm)}Z_{l}^{0}} \right| = \min$$

Event selection

efficiency **(%)** of the cuts,


applied sequentially for signal $L \rightarrow (e,\mu)+Z^0$ and tt background

M(L) = 0.7 TeV and M(Z') = 1.5 TeV	$L \rightarrow e Z^0$ (%)	$L \rightarrow \mu Z^0$ (%)	<i>tt</i> (%)
at least 4jets + (2e <mark>or</mark> 2µ)	74.62	69.03	14.24
Z ⁰ pairs with $p_T^{(j1, j2, j3, j4)} > 20GeV$	36.28	33.57	3.87
p _T ^{j1} > 100 GeV	35.92	33.29	1.06
p _T ^(11, 12) > 20 GeV	35.91	33.28	0.78
p _T ¹¹ > 200 GeV	35.63	33.05	0.09
p _T ^{miss} < 100 GeV	34.65	31.12	0.06
M(I+ I-) > 200 GeV/c ²	32.98	29.07	0.04

Event selection

$M_{\mu^{\pm}Z^0_{1,2}}$ distribution for L $ightarrow \mu$ Z⁰

for signal significance we took $\pm 2\sigma$ around the mean value $M_{(e,\mu)^{\pm}Z_{1,2}^0}$

signal significance for $L \rightarrow e Z^0$ channel

🖲 — High Luminosity 🖲 — High Luminosity High Luminosity A signal significance a tata sati signal significance ៥ ៩ ៩ ៩៩៩៩៩ III – Low Luminosity I – Low Luminosity III – Low Luminosity $1 \rightarrow e 7^{\circ}$ $L \rightarrow e 7^{\circ}$ $L \to \mu \, Z^0$ M(Z[•])=0.7 TeV M(Z·)=1.0 TeV M(Z')=0.7 TeV 10 10 109/07 6 6 5 6 5σ 5 5 5 4 4 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 200 400 600 800 1000 0 0 0 $M_L \,(\text{GeV}/\text{c}^2)$ $M_L (GeV/c^2)$ $M_L (GeV/c^2)$ significance B BBBBBB High Luminosity Low Luminosity High Luminosity Low Luminosity High Luminosity signal significance 8 8 8 8 8 888 III – Low Luminosity $\rightarrow e Z^{\circ}$ $L \rightarrow e Z^{\circ}$ $L \rightarrow \mu Z^{\circ}$ M(Z')=1.5 TeV M(Z')=2.0 TeV M(Z')=1.5 TeV signal signal 30 30 20 20 10 8 7 10 8 7 10 8 7 È 6 â 6 5 5σ 5 5 5 4 200 400 600 800 1000 1200 1400 D 200 **+**00 600 800 1000 1200 1400 200 400 600 800 1000 0 0 $M_{\rm L}$ (GeV/c²) $M_{\rm I} ({\rm GeV/c^2})$ $M_{\rm L}$ (GeV/c²)

signal significance for $L \rightarrow \mu Z^0$ channel

signal significance ៥ ៥ ៥ ខ័ខខិ®®

10

6

5

10

6

5

D

200 **+**00 600 800 1000

Ð

200 400 600 800 1000 1200 1400

5

5

1200 1400

1200 1400 High Luminosity
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

I – Low Luminosity

 $L \rightarrow \mu Z^{0}$

M(Z·)=1.0 TeV

5 σ

5σ

1200 1400

M_i (GeV/c²)

 $M_L (GeV/c^2)$

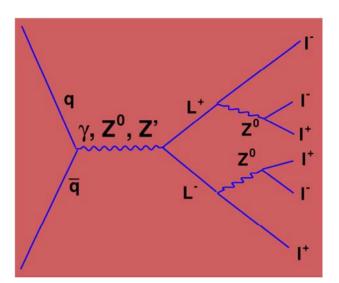
Low Luminosity

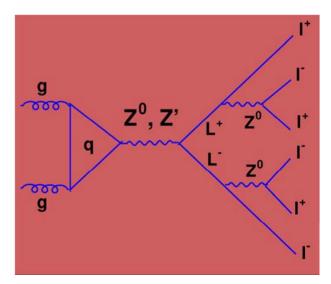
 $L \rightarrow \mu Z^{\circ}$

M(Z')=2.0 TeV

Preliminary results

6 leptons: pp
$$\rightarrow ... \rightarrow L^+L^- \rightarrow 2Z^0 + 2 (e^{\pm}, \mu^{\pm}) \text{ and } Z^0 \rightarrow 2(e^{\pm}, \mu^{\pm})$$


signal:


- at least six isolated leptons
- total charge = 0

$$\| M_{e_1e_2} - M_{Z^0} \| = \min \text{ and } \| M_{e_3e_4} - M_{Z^0} \| = \min$$
$$M_{Z^0} - 3\sigma_{Z^0}^{rec} \le M_{e_ie_j} \le M_{Z^0} + 3\sigma_{Z^0}^{rec}$$
$$\| M_{e_i^{\pm}Z_j^0} - M_{e_k^{\pm}Z_l^0} \| = \min$$

background:

no background

Preliminary results

signal obtained with and without the contribution of the 4-th quarks family (U, D)

				Prelimina	ary
channel	M(Z')	M(L)	M(U)	M(D)	signal
	2.5	0.9	-	-	11.2
6e	2.5	1.0	-	-	6.5
UE .	2.5	1.1	0.7	0.14	9.53
	2.5	1.2	0.7	0.14	4.18
	2.5	1.1	-	-	13.4
6µ	2.5	1.2	-	-	4.5
μ	2.5	1.2	0.7	0.14	18.1
	2.5	1.3	0.7	0.14	9.4
	2.5	1.0	-	-	14.1
4e and 2µ	2.5	1.1	-	-	6.8
	2.6	1.1	0.7	0.14	19.8
	2.6	1.2	0.7	0.14	9.4
	2.5	1.1	-	-	12.6
2e and 4µ	2.5	1.2	-	-	4.1
	2.6	1.2	0.7	0.14	18.7
	2.6	1.3	0.7	0.14	8.6

conclusions:

ATLAS discovery limit for this sequential charged heavy lepton

channel	M(L) discovery limit (TeV)	M(L) discovery limit with heavy quarks
2e + 4jets	1.0	1.2 (preliminary)
2µ + 4jets	0.9	1.1 (preliminary)
(6e, 6 μ)	0.9 / 1.1	1.1 / 1.3 (preliminary)
(4e+2µ, 2e+4µ)	1.0 / 1.1	1.2 / 1.3 (preliminary)

Singly produced excited electrons could be accessible up to mass of 5 TeV at LHC for Λ = 6 TeV.

future plans:

- single charged heavy lepton
- VSM, VDM and FMFM:

for $q\bar{q} \rightarrow \gamma^*, Z^0 \rightarrow L^+L^-$ and M_L =200GeV we will have (PRD66(2002)055003) 17500 lepton pairs from VSM, 54800 from VDM, 68400 from FMFM,

24500 from sequential model

- radiative corrections to gluon fusion production mechanism
- cross section modification due to models of extra dimensions (PLB436(1998)55, NPB537(1999)47)