Detection of Z' Gauge Bosons in the Di-muon Decay Mode in CMS

Robert Cousins, Jason Mumford and Viatcheslav Valuev

University of California, Los Angeles

for the CMS collaboration

1

Physics at LHC

Vienna, 13-17 July 2004

Physics at LHC, 13-17 July 2004

R. Cousins, J. Mumford, V. Valuev

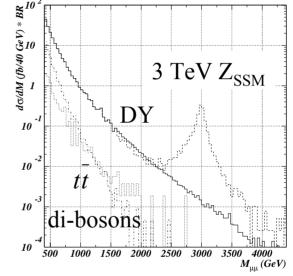
Introduction

- Z':
 - Generic name for additional heavy neutral gauge bosons.
 - Appear in many models beyond the SM: GUTs, dynamical symmetry breaking, "little Higgs", etc.
 - Might be light enough to be accessible at the LHC.
- Experimentally, $Z' \rightarrow \mu^+\mu^-$ channel is one of most promising.
- Main $Z' \rightarrow \mu^+ \mu^-$ physics goals:
 - Understand discovery potential and optimize the search strategy
 - main observable: $M_{\mu+\mu-}$. This talk
 - Work out algorithms to distinguish among models (including graviton) and study properties, once discovered Work in progress
 - main observables: A_{FB} on- and off-peak, y, σ ·Br, Γ .

$Z' \rightarrow \mu^+ \mu^-$ studies in CMS

- Rich history of studies of Z' discovery potential in CMS:
 - Pioneered by C.-E. Wulz in 1993-96.
 - Later studied by D. Bourilkov (2000), JINR group (S. Shmatov et al., 2002-03) and ETH group (M. Dittmar et al., 2003).
- Motivations to do more work <u>now</u>:
 - More realistic estimates can be obtained thanks to new tools available:
 - Move from event-generator-level studies to full simulation, reconstruction, and trigger emulation; study systematic uncertainties.
 - Use well-defined statistical techniques to quantify the mass reach.
 - $Z' \rightarrow \mu^+ \mu^-$ is a good benchmark channel for the muon detector, largely complementary to other channels (like H $\rightarrow 4\mu$, H $\rightarrow 2\mu 2\nu$, etc.):
 - Reconstruction of very-high-p_T muons.
 - Study of detector misalignment, B field uncertainties, calibration uncertainties, etc.

Chosen to be studied extensively for CMS Physics TDR (late 2005)



$Z' \rightarrow \mu^+ \mu^-$: signal and backgrounds

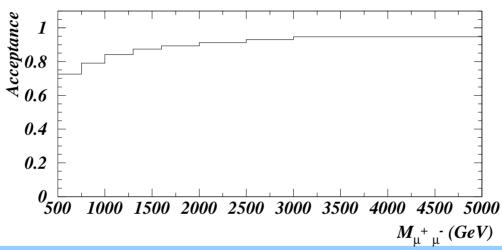
- Z's arise in many models; we studied six frequently discussed:
 - Z_{SSM} in sequential standard model (benchmark toy model);
 - $-Z' = Z_{\psi} \cos \theta_{E6} + Z_{\chi} \sin \theta_{E6} \text{ in } E_6$ and/or SO(10) models: $Z_{\psi}, Z_{\chi} \text{ and } Z_n (\theta_{E6} = 37.78^{\circ});$
 - $-Z_{LRM}$ and Z_{ALRM} in left-right symmetric models.
- Limits on the mass:
 - Current: 600-800 GeV;
 - Expected by LHC start-up: ≤ 1 TeV.
- Br(Z' $\rightarrow \mu^+\mu^-$): 2-8%

(if no exotic decay channels are open)

PYTHIA cross-sections; no added *K*-factors

- Dominant (and irreducible) background: Drell-Yan production of muon pairs $pp \rightarrow \gamma/Z^0 \rightarrow \mu^+\mu^-$.
- Other sources: ZZ, WZ, WW, $t\bar{t}$, bb, pile-up, etc.

(much smaller than Drell-Yan and reducible)


Generation and reconstruction

- Event generation: PYTHIA6, CTEQ5 PDF's
 - Z_{SSM} , Z_{ψ} , Z_{η} , Z_{χ} , Z_{LRM} , and Z_{ALRM} at 1, 3 and 5 TeV decaying to $\mu^+\mu^-$
 - Obtain couplings from literature, introduce in PYTHIA.
 - Include the full $\gamma^*/Z^0/Z'$ interference structure.
 - Drell-Yan $\mu^+\mu^-$ pairs in several mass intervals.
- Simulation and reconstruction:
 - Detector response: full GEANT3-based description (CMSIM).
 - Event reconstruction: CMS OO reconstruction package (ORCA). Includes:
 - digitization (detailed simulation of electronic response);
 - emulation of Level-1 and High-Level (HLT) Triggers;
 - off-line reconstruction (our group worked on algorithms capable of improving momentum resolution for very-high-p_T muons).

Event selection

- Both μ^+ and μ^- should be within the geometrical acceptance of the muon system ($|\eta| < 2.4$) and pass the trigger:
 - Acceptance: raises from about 80% at 1 TeV to almost 95% at very high $M_{\mu\mu}$.

-L1/HLT trigger efficiency: about 98% at 1 TeV, about 95% at 5 TeV.

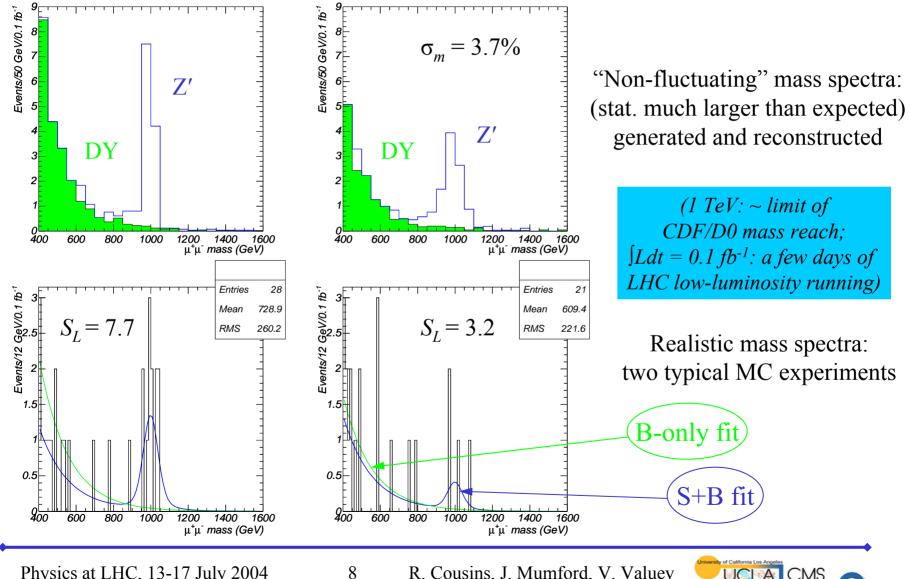
- Require that there are at least two μ 's of opposite charge sign.
- No background-rejection cuts.

Overall efficiency: 70-75% (1-5 TeV).

Fitting procedure

- Generate ensembles of MC experiments:
 - number of events in each experiment fluctuates according to Poisson distribution with a mean of $\sigma \cdot Br \cdot (\int Ldt) \cdot \epsilon$;
 - appropriately add Drell-Yan contribution from lower masses.
- In each experiment, fit $M_{\mu\mu}$ values using an unbinned maximum likelihood:

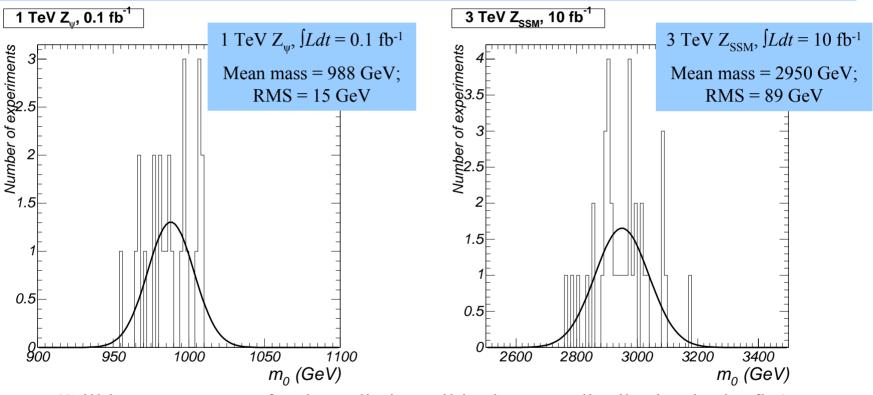
$$p(M_{\mu\mu}) = \frac{N_s}{N_{tot}} \cdot p_s(M_{\mu\mu}; m_0, \Gamma) + \left(1 - \frac{N_s}{N_{tot}}\right) \cdot p_b(M_{\mu\mu})$$


- p_s (signal pdf) is a convolution of a Breit-Wigner with a Gaussian smearing;
- p_b (background pdf) is an exponential, with the slope parameter determined from fits to Drell-Yan events.

Up to three free parameters: signal fraction (N_s/N_{tot}) , signal mean (m_0) , and signal FWHM (Γ).

No constraints on the absolute background level: fit assumes only background shape is known.

Example: Z_w at 1 TeV, $\int Ldt = 0.1$ fb⁻¹



Physics at LHC, 13-17 July 2004

R. Cousins, J. Mumford, V. Valuev

Fit results: m_0 and Γ

• <u>Signal mean mass</u>: close to true value, small spread. Measured with precision of 5% (at high masses and discovery limit) or better

(Still have to account for the radiative tail in the mass distribution in the fits)

• <u>Signal Γ :</u> hard to reconstruct (FWHM dominated by resolution smearing)

9

Significance estimators (I)

• Use likelihood-ratio estimator S_L to calculate significance of an observed "signal": (previously used in CMS by Karlsruhe group in H \rightarrow 4µ studies)

$$S_L = \sqrt{2 \ln(L_{S+B}/L_B)}$$
, where

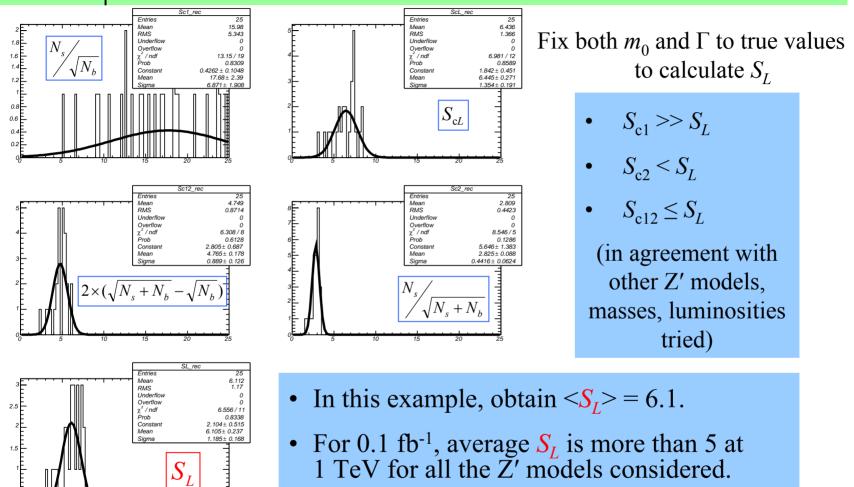
- $-L_{S+B}$ is the maximum likelihood from the signal-plus-background fit (*p*),
- $-L_B$ is the maximum likelihood from the background-only fit (p_b) .

Justification:

- In the large-statistics limit, S_L^2 is expected to follow a χ^2 -distribution with ndof equal to the difference in the number of free parameters between S+B and B-only hypotheses (theorem proved by S.S. Wilks in 1938).
- If ndof is one, then distribution of S_L is a standard Gaussian.
- Therefore, S_L gives the probability (expressed in number of σ 's) that the pure background fakes a signal (i.e. significance).

Dedicated MC study showed that S_L behaves as desired in a small stat. regime

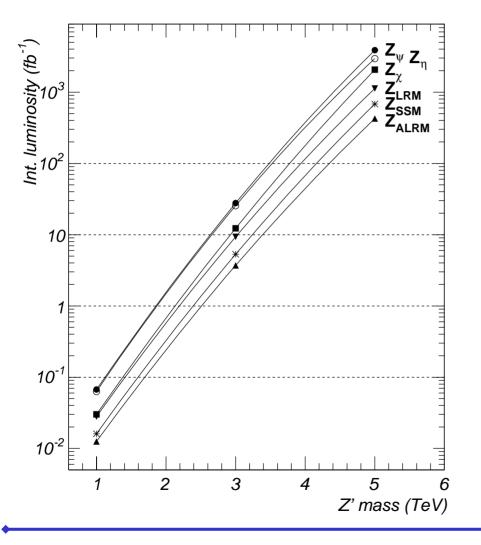
Significance estimators (II)


- For comparison with *S_L*, also try a few other commonly used ("counting") estimators:
 - $S_{c1} = N_S / \sqrt{N_B},$ $S_{c2} = N_S / \sqrt{N_S + N_B},$ $S_{c12} = 2 \times (\sqrt{N_S + N_B} - \sqrt{N_B}),$ (proposed by S. Bityukov and N. Krasnikov, Mod. Phys. Lett. A13 (1998) 3235) $S_{cL} = \sqrt{2 \ln \left(\left(1 + N_S / N_B \right)^{N_S + N_B} \exp(-N_S) \right)}.$

 N_S and N_B – number of signal and background events within $m_0 \pm 2\sigma$.

• Usual convention: S > 5 is necessary to establish a discovery (probability of 2.9·10⁻⁷ that the pure background would mimic a signal)

Z_{ψ} at 1 TeV, 0.1 fb⁻¹: significance



• S_L scales very nicely with $\sqrt{\int Ldt}$.

$Z' \rightarrow \mu^+ \mu^-$: CMS discovery potential

$\textbf{Z'} \!\rightarrow\! \mu^{\textbf{+}} \, \mu^{\textbf{-}} \!\!: \textbf{5} \sigma$ significance curves

13

$Z' \rightarrow \mu^+ \mu^-$ mass reach:

- > 1 TeV with 0.1 fb⁻¹
- 2.6 3.4 TeV with 10 fb⁻¹
- 3.4 4.3 TeV with 100 fb⁻¹

<u>N.B.: syst. uncertainties are</u> not taken into account

- Perfect alignment, calibration, B field, etc.;
- Background shape, functional forms of pdf's, mass resolution perfectly known.

Physics at LHC, 13-17 July 2004

R. Cousins, J. Mumford, V. Valuev

Summary

- We have set up a procedure for studying and quantifying the Z' mass reach. Main points:
 - Full simulation (CMSIM) and reconstruction (ORCA) as input;
 - Unbinned M.L. fits exploring signal and background shapes only;
 - Likelihood-ratio significance estimator, shown to perform as desired.
- We have obtained mass reach estimates in $Z' \rightarrow \mu^+\mu^-$ channel, with systematic uncertainties yet to be accounted for:
 - More than 5σ significance above 1 TeV at the earliest stages of data-taking;
 - Average 5σ significance at a mass of 3.4-4.3 TeV (depending on the model) with an integrated luminosity of 100 fb⁻¹.

Consistent with earlier results, but obtained with above improvements

• Next step: evaluate systematic uncertainties and their impact.

