Status and

 Enture Progress of B PhyicsA. I. Sanda Nagoya University

Physics at LHC2004 Vienna July 13-17

This is not a comprehensive review. Who did what first please see David McFarlane's talk.

-Past
-Present
-Future
-Remote future
Of B physics ensisis af thecoos vema Juy $13-17$

Physics at LHC2004 Vienna July 13-17

Major discoveries

xis-andK systems

discoveries

1980	$\mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}}$	1947	K^{0}
+6	$B-\bar{B}$ mixing	+9	$K-\bar{K}$ mixing
+19	$B \rightarrow \psi K_{S}$	+17	$K_{L} \rightarrow \pi^{+} \pi^{-}$
	CPV $\mathrm{i} B \rightarrow \pi \pi$	+41	$\varepsilon^{\prime} / \varepsilon$
	$B \rightarrow \phi K_{S}$	+52	T violation
	ϕ_{2}, ϕ_{3}	+57	$K^{+} \rightarrow \pi^{+} \nu \bar{V}$
	CPTV \ldots	$? ?$	$K_{L} \rightarrow \pi^{0} \nu \bar{V}$

particle
mixing

CP violation

Nearly 60 years of intensive investigation

B decays will be promising area of research for

KEKB

PEPII

Intense competition has been extremely good for high energy physics!

Unitarity triangle

Unitarity triangle

$\sin \phi_{2}$

$$
\bar{\rho}\left(\pi^{+} \pi^{-}\right)=\frac{A\left(\bar{B} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(B \rightarrow \pi^{+} \pi^{-}\right)}=\frac{V_{u b} V_{u d}^{*} T+V_{t b} V_{t d}^{*} P}{V_{u b}^{*} V_{u d} T+V_{t b}^{*} V_{t d} P}
$$

Independent of ST INT
(1) T or $\mathrm{P}=0$
(2) $K M$ factors have same phase
$\frac{\bar{\Gamma}_{\pi^{+} \pi^{-}}(t)-\Gamma_{\pi^{+} \pi^{-}}(t)}{\bar{\Gamma}_{\pi^{+} \pi^{-}}(t)+\Gamma_{\pi^{+} \pi^{-}}(t)}=\frac{\left|\bar{\rho}\left(\pi^{+} \pi^{-}\right)\right|^{2}-1}{\left|\bar{\rho}\left(\pi^{+} \pi^{-}\right)\right|^{2}+1} \cos \Delta M t+2 \frac{\operatorname{Im}\left(\frac{q}{p} \bar{\rho}\left(\pi^{+} \pi^{-}\right)\right)}{1+\left|\bar{\rho}\left(\pi^{+} \pi^{-}\right)\right|^{2}} \sin \Delta M t$

$$
S_{\pi \pi}
$$

$\operatorname{Im}\left(\frac{q}{p} \bar{\rho}\left(\pi^{+} \pi^{-}\right)\right)=\left|\bar{\rho}\left(\pi^{+} \pi^{-}\right)\right| \sin \left(2 \phi_{2}+\theta\right)$
Unknowns: $\left|\frac{P}{T}\right|, \delta, \phi_{2} \quad 2$ constraints

$$
\theta=\arg \left(\frac{\left.1+e^{i \phi_{2}}\left|\frac{V_{b} b_{V d}^{*}}{V_{l} V_{u d}^{*}}\right| \frac{P}{T} \right\rvert\, e^{i \delta}}{1+e^{-i \phi_{2}}\left|\frac{V_{i b} b_{d d}^{*}}{V_{b b} b_{u d}^{* *}}\right|\left|\frac{P}{T}\right| e^{i \delta}}\right)
$$

Unitarity triangle

$B^{ \pm} \rightarrow D^{\left(0^{*}\right)} K^{ \pm}$

$$
\phi_{3}=\left(77_{-19}^{+17}(\text { stat }) \pm 13(\text { syst }) \pm 11(\text { model })\right)^{0}
$$

$$
26^{\circ}<\phi_{3}<126^{0} \quad 2 \sigma
$$

Pruxde

For $B \rightarrow \phi K_{s}$ decay, its another story

$$
\frac{A(B \rightarrow f)}{A(\bar{B} \rightarrow \bar{f})}=\frac{V_{T} T+V_{P} P e^{i \delta}}{V_{T}^{*} T+V_{P}^{*} P e^{i \delta}}
$$

Ratio is independent of strong interaction.

$$
\frac{A\left(B \rightarrow \phi K_{S}\right)}{A\left(\bar{B} \rightarrow \phi K_{S}\right)}=\frac{V_{t b} V_{t s}^{*}}{V_{t b}^{*} V_{t s}}
$$

$\operatorname{Asym}\left(\phi K_{S}\right)=\operatorname{Asym}\left(\psi K_{S}\right)$

$$
=\frac{V_{c b} V_{c s}^{*}}{V_{c b}^{*} V_{c s}}=\frac{A\left(B \rightarrow \psi K_{S}\right)}{A\left(\bar{B} \rightarrow \psi K_{S}\right)}
$$

$$
V_{t b} V_{t s}^{*}+V_{c b} V_{c s}^{*}+V_{u b} V_{u s}^{*}=0
$$

$$
\lambda^{2}
$$

$\sin 2 \phi_{1}(\beta)$ Summary

3 sigma effect goes away half of the time. W.-Y. Lee

Mishima Sanda

After making sure that $\mathbf{B} \rightarrow \mathbf{K}^{*} \gamma \quad \mathbf{B R}$ is $\mathbf{O K}$

(a) $S_{\phi K_{S}}$ with $L R$ insertion

(b) $S_{\phi K_{S}}$ with $R L$ insertion

(c) $S_{\phi K_{S}}$ with $L L$ or $R R$ insertion

Too early to conclude

Clarify the existing
physics beyond the standard model

$$
|A|^{2}+|S|^{2}>1 \text { in } B \rightarrow \pi \pi
$$ violation of quantum mechanics

$$
\begin{aligned}
& a_{C P}\left(B \rightarrow \psi K_{S}\right) \approx-a_{C P}\left(B \rightarrow \phi K_{S}\right) \\
& \text { Gross violation of the SM unlikely? }
\end{aligned}
$$

Kobayashi-Maskawa scheme is correct
CP may be broken spontaneously or explicitly at some high energy.

In any case, in low energy effective theory, it is likely that any coupling constant that can obtain a phase will have a phase.

You may see CP violation everywhere once new physics is found!

SuperKEKB-SuperPEPII
SuperKEKB LIO is on the Web hep-ex/0406071

SuperKEKB Goal

$$
L=5 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}
$$

Considering all these research programs other than the B factory, the funding for the luminosity upgrade of a B-factory is not an easy task for KEK, and for other laboratories, too.
$\$ 80 \mathrm{M} /$ year is available for KEK particle physics experimental program. So, in principle, we can build Super KEKB with exiting budget.

Presently KEKB, and Belle are using only $5 / 8$ of this funding.

Problem is that there can be no Linear Collider R\&D

Linear-collider people have been waiting. The next major project in Japan will be LC.
Linear-collider costs: \$50 for every Japanese
National deficit: every Japanese owe \$70,000

Retirement benefit is a big issue Party almost went out of power

Adiabatic Construction
Needs update

"Crab cavities will be in by $2005^{\prime \prime}$ L becomes X2

- In any case I agree that one super-B factory should be built in the world.
- And it may be a good idea for you to jointly work for the best scheme of the super-B factory.

My prediction:
SUPERKEKB upgrade will be funded if Babar joins Belle

Don't kill the goose that lay golden eggs!

Babar Belle

New Physicics seach

- Determination of the triangle
- Rare decays
- Lepton number violation

Strategy depends a lot
on LHC discoveries

$$
\begin{array}{llll}
& \sqrt{ } \sqrt{ } \text { large deviation } \\
\text { Pattern of the deviation from the SM in various } & \sqrt{ } & \text { sizable deviation } \\
\text { SUSY models. } & - & \text { small deviation }
\end{array}
$$

	Bdunitarity	ε	$\Delta \mathrm{m}(\mathrm{Bs})$	$\mathrm{B}->\phi \mathrm{Ks}$	B->Ms γ indirect CP	$\begin{aligned} & \text { b->s } \gamma \\ & \text { direct CP } \end{aligned}$
mSUGRA	closed	-	-	-	-	$\sqrt{ }$
SU(5)SUSY GUT + vR (degenerate)	closed	$\sqrt{ } /$	-	-	$\sqrt{ }$	-
SU(5)SUSY GUT + vR (non-degenerate)	closed	-	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$
U(2) Flavor symmetry	$\sqrt{ }$	$\sqrt{ }$	$\begin{aligned} & V \sqrt{V} \\ & \text { T.Goto, Y.S } \end{aligned}$			

Unitarity triangle

Clean determination of $2 \phi_{1}+\phi_{3}$

$$
\begin{aligned}
& 2 \phi_{1}+\phi_{3}=\pi+\phi_{1}-\phi_{2} \\
& B \rightarrow \bar{D}^{0} K_{S} \\
& \operatorname{Br}\left(B \rightarrow D^{0} K_{S}\right) \approx \lambda^{2} B r\left(B \rightarrow D^{0} \pi^{0}\right) \\
& =\mathrm{O}\left(10^{-5}\right) \\
& B \rightarrow D^{0} K_{S}
\end{aligned}
$$

No penguins

$$
\begin{gathered}
\frac{\bar{\Gamma}_{f}(t)-\Gamma_{\bar{f}}(t)}{\overline{\Gamma_{f}}(t)+\Gamma_{\bar{f}}(t)}=\frac{\left|\bar{\rho}_{f}\right|^{2}-1}{\left|\bar{\rho}_{f}\right|^{2}+1} \cos \Delta M t+2 \frac{\operatorname{Im}\left(\frac{q}{p} \bar{\rho}_{f}\right)}{1+\left|\bar{\rho}_{f}\right|^{2}} \sin \Delta M t \\
A_{f} \\
\bar{\rho}_{D^{0} K_{S}}=\frac{A\left(\bar{B} \rightarrow D^{0} K_{S}\right)}{A\left(B \rightarrow D^{0} K_{S}\right)}=\frac{a V_{c b} V_{u s}^{*}}{b V_{c s} V_{u b}{ }^{*}} \\
\bar{\rho}_{\bar{D}^{0} K_{S}}=\frac{A\left(\bar{B} \rightarrow \bar{D}^{0} K_{S}\right)}{A\left(B \rightarrow \bar{D}^{0} K_{S}\right)}=\frac{b V_{u b} V_{C s}^{*}}{a V^{*}{ }_{c b} V_{u s s}} \\
S_{D^{0} K_{S}}=\frac{\bar{\rho}_{D^{0} K_{S}}=\frac{a}{b} e^{i \phi_{s}} e^{i \arg (a / b)}}{1+\left|\rho_{D^{0} K_{S}}\right|^{2}} \quad \bar{\rho}_{D^{0} K_{S}}=\frac{b}{a} e^{i \phi_{s}} e^{-i \arg (a / b)} \\
\mid \sin \left(2 \phi_{2}+\phi_{3}+\delta\right) \\
S_{\bar{D}^{0} K_{S}}=\frac{2\left|\rho_{\bar{D}^{0} K_{S}}\right| \sin \left(2 \phi_{2}+\phi_{3}-\delta\right)}{1+\left|\rho_{\bar{D}^{0} K_{S}}\right|^{2}}
\end{gathered}
$$

Unitarity triangle

 $A \lambda^{3} \eta$

Φ_{3} from $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}^{+}, \mathrm{D}_{\mathrm{s}}$

K-

LHCB

$p a V_{u b} V_{c s}^{*}+q b V_{c b}^{*} V_{u s}$

$$
\propto e^{i \phi s} \sqrt{\rho^{2}+\eta^{2}} \lambda^{3}+\frac{q_{s}}{p_{s}} \frac{b}{a} \lambda^{3}
$$

$$
\begin{aligned}
& \frac{\bar{\Gamma}_{f}(t)-\Gamma_{\bar{f}}(t)}{\bar{\Gamma}_{f}(t)+\Gamma_{\bar{f}}(t)}=\frac{\left|\bar{\rho}_{f}\right|^{2}-1}{\left|\bar{\rho}_{f}\right|^{2}+1} \cos \Delta M t+2 \frac{\operatorname{Im}\left(\frac{q}{p} \bar{\rho}_{f}\right)}{1+\left|\bar{\rho}_{f}\right|^{2}} \sin \Delta M t \\
& A_{f} \\
& S_{f} \\
& \text { LHCb: } \\
& \bar{\rho}_{D^{-} K^{+}}=\frac{A\left(\bar{B}_{S} \rightarrow D^{-}{ }_{S} K^{+}\right)}{A\left(B_{S} \rightarrow D^{-} K^{+} K^{+}\right)}=\frac{a V_{b b} V_{c c}{ }^{*}}{b V_{w s} V_{c b}{ }^{*}} . \\
& \bar{\rho}_{D^{+} K^{-}}=\frac{A\left(\bar{B}_{S} \rightarrow D^{+} K^{-}\right)}{A\left(B_{S} \rightarrow D^{+}{ }_{S} K^{-}\right)}=\frac{b V_{c V_{l s}}{ }^{*}{ }^{*}}{a V^{{ }^{*}}{ }_{w b} V_{c S}} \\
& S_{\bar{D}_{S}^{+} K^{-}}=\frac{2\left|\rho_{\bar{D}_{S}^{+} K^{-}}\right| \sin \left(\phi_{3}-\delta\right)}{1+\left|\rho_{\bar{D}_{S}^{+} K^{-}}\right|^{2}}
\end{aligned}
$$

Rada hanalis

$$
\begin{aligned}
& \operatorname{Br}\left(K^{+} \rightarrow \pi^{+} v \overline{\bar{v}}\right)=4.2_{-3.5}^{2977} \times 10^{-10} \\
& \operatorname{Br}\left(B \rightarrow X_{S} v \bar{v}\right) \square 4 \times 10^{-5}
\end{aligned}
$$

B's show the loop effects better than \mathbb{K} 's

Rare decay reach

Machine
CLEO
Belle \& Babar
Next gen.

Branching ratio

$$
10^{-6}-10^{-7}
$$

$$
10^{-8}-10^{-9}
$$

$$
10^{-10}-10^{-11}
$$

B's may be more efficient in showing loop effects these may be equivelant to 10^{-15} for K's ??

Look for new physics

Is there CP asymmetry in
$B_{s} \rightarrow \psi \phi$
Sensitive to $\arg \left(\frac{M_{12}^{s^{*}}}{M_{12}^{s}}\right)$

Same sign dilepton asymmetries

$$
\begin{gathered}
\frac{N(++)-N(-)}{N(++)+N(-)}=\frac{1-|p / q|^{4}}{1+|p / q|^{4}}=-r \sin \varsigma \quad \square 10^{-5} \\
r \square \text { few } \times 10^{-3} \quad \sin \varsigma=\frac{8 m_{c}^{2}}{3 m_{b}^{2}} \lambda^{2} \eta \\
\operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right) \propto \operatorname{Im}\left(\frac{V_{b b} b_{c d}^{*}+V_{c b} V_{C d}^{*}}{V_{b b} v_{c l}^{*}}\right) \quad \begin{array}{l}
\text { Using free quark model neglecting } \\
\text { Accidental suppression }
\end{array} \\
=\operatorname{Im}(-1)
\end{gathered}
$$

$O\left(10^{-3}\right)$ if new physics is present!

Lepton Flavor Violation

- must be there

Non-vanishing $\nu_{e}-v_{\mu}$ and $v_{\mu}-v_{\tau}$ mixing

Importance of pushing

 *theruark-lepton physics
Quark Physics

$\mu \rightarrow e \gamma$
$B \rightarrow \tau \mu$
$B^{ \pm} \rightarrow \mu^{ \pm} \mu^{+} \mu^{-}$

Neutrino

$$
\tau \rightarrow 3 \mu, \ldots
$$ Physics

What luminosity do you need ??

Figure 4.44: Experimental status of the LFV search.
SuperKEKB physics WG

Red | Macholion

Past Discoveries

- Parity
- Ω^{-}]]

■
- Top
- D 1 escr
- Emgsc
- L\&ACPVir B B IS

- Non-lanishina

Early 1970's
 Early 2000's

- Gauge theory was discovered but it took some time to settle to $\operatorname{SU}(2) \mathrm{XU}(1)$
- Other choices O(3), SU(2)XSU(2)
- How many generations?
- Lepton quark symmetry
- CP violation was not explained
- What is the correct physics beyond the standard model?
- What are the characters?
- What is the origin of CP violation?

We need unanicipated discovery -t metre around the coner

Systematic Search

- Precision measurements shoot for error less than 1\%
- Need as much luminosity as possible
- CPV in B_{S} decays where no CP is expected by the SM
- Precise measurement of $\Delta \boldsymbol{M}_{\mathrm{d}}$ and $\Delta \boldsymbol{M}_{\mathrm{S}}$
- Lepton number violation in τ decays Provide constraints to NP models

I once stated that instead of 10^{34} we need 10^{43}

I was not that far off!
"Our 1964 experiment can be done with one pulse of the BNL beam!" Cronin

Just 3 years ago Maury Tigner said: "1035 is a dream"
State what we need and hope that machine physicists Are smart enough to deliver!

1. LHC and B factory compliment each other
2. 4 years from now, we may be looking for quantum effects of particles discovered at LHC
3. Precision experiments can reveal new physics even if it could not be found at LHC.
4. I m certain that, some day, measurements that take one year to make can be done in one day.
