SUSY Phenomenology

SABINE KRAML

HEPHY Vienna & CERN PH/TH

Physics at LHC 14 July, 2004

SUSY Phenomenology - p.1/25

Introduction

• The SM is extremely successful for energies up to $\sim 100~{\rm GeV};$ yet some deep questions remain open:

origin of mass, EWSB, flavour and CP mixing, dark matter,

- Any further progress requires physics beyond the SM.
- We expect this new physics to be manifest at the TeV scale: motivation to build LHC.
- Of the existing BSM theories, low-scale supersymmetry (SUSY) is the best motivated and best studied one.

will review some aspects of SUSY relevant for LHC; by no means exhaustive SUSY has an incredibly rich phenomenology:

superpartner spectrum, decay chains, dark matter candidate, R-parity violation, CP violation, lepton flavor violation, *etc, etc.*

Joke at a recent BBQ party:

"Never trust a theorist talking about SUSY"

SUSY has an incredibly rich phenomenology:

superpartner spectrum, decay chains, dark matter candidate, R-parity violation, CP violation, lepton flavor violation, *etc, etc.*

Joke at a recent BBQ party:

"Never trust a theorist talking about SUSY"

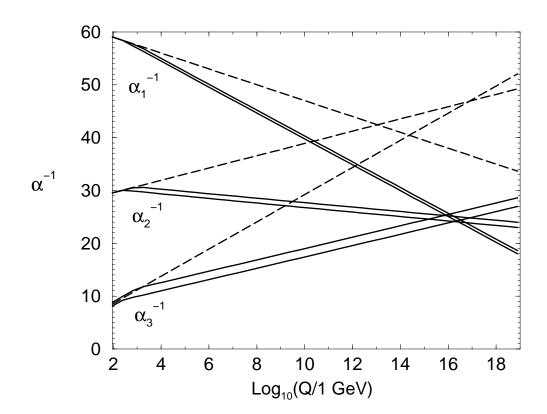
SUSY has an incredibly rich phenomenology:

superpartner spectrum, decay chains, dark matter candidate, R-parity violation, CP violation, lepton flavor violation, *etc, etc.*

Joke at a recent BBQ party:

"Never trust a theorist talking about SUSY"

SUPERSYMMETRY


Why we like it:

- symmetry between fermions and bosons
- natural and unique extension of relativistic symmetries
- many theoretical beauties
- rich phenomenology

"The discovery of supersymmetry is tantamount to the discovery of quantum dimensions of space-time"

[David Gross, CERN Colloq. 6 Jul 2004]

GAUGE COUPLING UNIFICATION

Running of the inverse gauge couplings: dashed lines – SM; full lines – MSSM.

MSSM SPECTRUM

particle	spin	superpartner	spin
quarks	1/2	squarks	0
leptons	1/2	sleptons	0
gauge bosons	1	gauginos	1/2
Higgs bosons	0	higgsinos	1/2
graviton	2	gravitino	3/2

 $W = h_E H_1 L E^c + h_D H_1 Q D^c + h_U H_2 Q U^c - \mu H_1 H_2$

 $m(\text{particle}) \neq m(\text{superpartner})$ \Rightarrow SUSY must be broken \Leftarrow

SOFT-BREAKING TERMS

Terms in the Lagrangian that break SUSY 'softly' *i.e. they do not (re-)introduce quadratic divergencies*

- gaugino masses $M_{\lambda} \lambda^a \lambda^a$
- scalar (mass)² terms $m^2 \phi^* \phi$
- bilinear and trilinear couplings $B\phi^2 + A\phi^3$

We want to generate these terms by spontaneous symmetry breaking, analogous to the SM Higgs mechanism.

SOFT-BREAKING TERMS

Terms in the Lagrangian that break SUSY 'softly' *i.e. they do not (re-)introduce quadratic divergencies*

- gaugino masses $M_{\lambda} \lambda^a \lambda^a$
- scalar (mass)² terms $m^2 \phi^* \phi$
- bilinear and trilinear couplings $B\phi^2 + A\phi^3$

We want to generate these terms by spontaneous symmetry breaking, analogous to the SM Higgs mechanism.

Unfortunately ...

- ... this does not work with the MSSM fields alone
- ... it would not lead to a viable spectrum :-(

HIDDEN-SECTOR SUSY BREAKING

Supersymmetry breaking origin (Hidden sector) Flavor-blind Monocommunications

MSSM (Visible sector)

- In the hidden sector, the *F* component of some non-MSSM field acquires a non-zero VEV, which breaks SUSY.
- This breakdown of SUSY is then communicated to the visible sector (the MSSM) by flavor-blind interactions.

Even so it is a very tricky business to achieve viable SUSY breaking, beyond the scope of this talk

HIDDEN-SECTOR SUSY BREAKING

Supersymmetry breaking origin (Hidden sector) Flavor-blind Monocommunity interactions

MSSM (Visible sector)

Fortunately, how SUSY is broken in the hidden sector is largely irrelevant for phenomenology :-)

Far more important are the mediation mechanism and the associated scale of SUSY breaking !

gravity, gauge, gaugino, anomaly ... mediation, string inspired models,

 \rightarrow Boundary conditions for soft parameters at a high scale.

THE SCALE OF SUSY BREAKING

 In gravity-mediated SUSY breaking the hidden sector communicates with the MSSM through gravitational interactions

$$m_{soft}\sim rac{\langle F
angle}{M_P}
ightarrow \sqrt{\langle F
angle}\sim 10^{11}~{
m GeV}.$$
 ${\cal O}$ (weak scale)

 In gauge-mediated SUSY breaking the MSSM soft terms arise from loop diagrams involving some messenger particles

$$m_{soft} \sim rac{\langle F
angle}{M_{mess}}$$

and $\sqrt{\langle F
angle}$ can be as low as $10^4 - 10^5$ GeV!

GOLDSTINO AND GRAVITINO

- Spontaneous breaking of a global symmetry leads to a massless Nambu-Goldstone mode with the same quantum numbers as the broken symmetry generator.
- In SUSY, the broken generator is the fermionic charge Q_{α} .
- Hence the Nambu-Goldstone mode is a massless neutral Weyl fermion, the goldstino.
- In local SUSY, the longitudinal components of the goldstino are absorbed by the gravitino, which thus acquires a mass.

 \rightarrow super-Higgs mechanism

GRAVITINO MASS

$$m_{ ilde{G}}=m_{3/2}=rac{\langle F
angle}{\sqrt{3}M_P}$$

- In gravity/anomaly mediated SUSY breaking, this gives $m_{ ilde{G}}\sim m_{soft}\sim {\cal O}(100)~{
 m GeV}$
 - $\rightarrow \tilde{G}$ does not play any role in collider physics.
- In gauge mediation with $M_{mess} \ll M_P$, the gravitino turns out to be the lightest SUSY particle (LSP), $m_{\tilde{G}} \sim eV keV$.
 - \rightarrow Phenomenology characterized by NLSP $\rightarrow \tilde{G}$ decays !

GRAVITY MEDIATION

mSUGRA: $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sgn}(\mu)$

GRAVITY MEDIATION

mSUGRA: $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sgn}(\mu)$

Gaugino masses (GUT relation):

 $M_1: M_2: M_3 \sim 1:2:7, \qquad M_1 \sim 0.4 \, m_{1/2}$

Higgsino mass parameter

$$|\mu|^2 \sim 0.03\,m_0^2 + 1.2\,m_{1/2}^2 - 2A_0m_{1/2} - 0.9A_0^2$$

GRAVITY MEDIATION

mSUGRA: $m_0, \, m_{1/2}, \, A_0, \, aneta$, sgn (μ)

Gaugino masses (GUT relation):

 $M_1: M_2: M_3 \sim 1:2:7, \qquad M_1 \sim 0.4 \, m_{1/2}$

Higgsino mass parameter

$$|\mu|^2 \sim 0.03\,m_0^2 + 1.2\,m_{1/2}^2 - 2A_0m_{1/2} - 0.9A_0^2$$

Therefore $|\mu| > M_2$ in most benchmark scenarios ($A_0 \leq 0$) and

$$egin{array}{lll} ilde{\chi}_{1}^{0} & \sim ilde{B} & : & m_{ ilde{\chi}_{1}^{0}} \sim M_{1} \ ilde{\chi}_{2}^{0}, ilde{\chi}_{1}^{\pm} & \sim ilde{W}^{0}, ilde{W}^{\pm} & : & m_{ ilde{\chi}_{2}^{0}}, m_{ ilde{\chi}_{1}^{\pm}} \sim M_{2} \ ilde{\chi}_{3,4}^{0}, ilde{\chi}_{2}^{\pm} & \sim ilde{H}^{0}, ilde{H}^{\pm} & : & m_{ ilde{\chi}_{3,4}^{0}}, m_{ ilde{\chi}_{2}^{\pm}} \sim |\mu| \end{array}$$

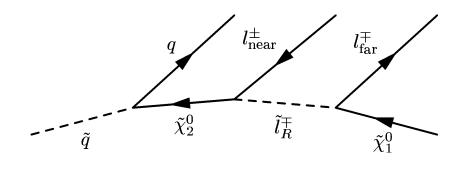
MSUGRA

Sleptons and squarks:

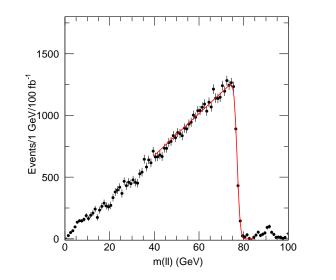
$$egin{aligned} m_L^2 &\sim m_0^2 + 0.5\,m_{1/2}^2, \ m_E^2 &\sim m_0^2 + 0.15\,m_{1/2}^2, \end{aligned}$$

$$egin{array}{ll} m_Q^2 &\sim m_0^2 + 6.3\,m_{1/2}^2, \ m_{U,D}^2 &\sim m_0^2 + 5.8\,m_{1/2}^2. \end{array}$$

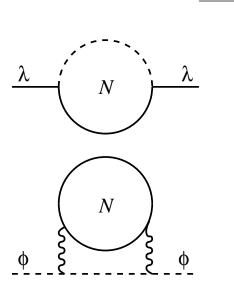
MSUGRA

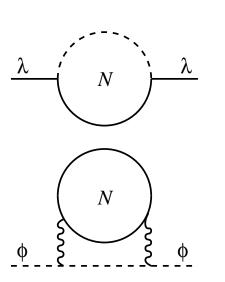

Sleptons and squarks:

$$egin{aligned} m_L^2 &\sim m_0^2 + 0.5\,m_{1/2}^2, &m_Q^2 &\sim m_0^2 + 6.3\,m_{1/2}^2, \ m_E^2 &\sim m_0^2 + 0.15\,m_{1/2}^2, &m_{U,D}^2 &\sim m_0^2 + 5.8\,m_{1/2}^2. \end{aligned}$$


Typical mass pattern for not too large m_0 :

$$m_{ ilde{\chi}_1^0} < m_{ ilde{\ell}_R} < m_{ ilde{\ell}_L}, m_{ ilde{\chi}_2^0} \, \ll \, m_{ ilde{t}_1} \lesssim m_{ ilde{q}_R} < m_{ ilde{q}_L}$$


Golden LHC SUSY signature:

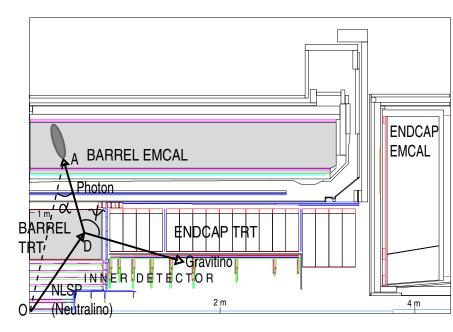

 \rightarrow talk by Frank Paige

In GMSB, SUSY is broken by a gauge-singlet chiral supermultiplet *S*. This breaking is communicated to the visible sector by messenger particles *N* which have ordinary gauge interactions. Scale = M_{mess} .

In GMSB, SUSY is broken by a gauge-singlet chiral supermultiplet S. This breaking is communicated to the visible sector by messenger particles N which have ordinary gauge interactions. Scale = M_{mess} .

- GUT relation holds for gaugino masses.
- Squark/slepton flavors are a priori degenerate.
- Sleptons and Higgses are typ. much lighter than the squarks.
- LSP = gravitino.

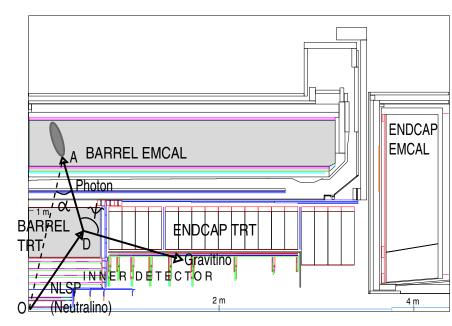
Typical mass ordering:


 $m_{ ilde{B}}, m_{ ilde{l}_R} < m_{ ilde{W}}, m_{ ilde{l}_L} << m_{ ilde{g}}, m_{ ilde{q}}$

LSP = gravitino, $m_{\tilde{G}} = eV - keV$

Phenomenology characterized by *nature and lifetime* of the NLSP! (NLSP $\tilde{X} \rightarrow X\tilde{G}$ decays; prompt / macroscopic / outside detector)

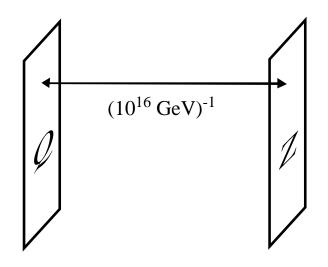
NLSP	decay mode
gaugino-like neutralino	$ ilde{\chi}^0_1 o (\gamma, Z) ilde{G}$
higgsino-like neutralino	$ ilde{\chi}^0_1 o h ilde{G}$
stau	$ ilde{ au}_1 o au ilde{G}$
slepton	$ ilde{\ell}_R o \ell ilde{G}$
squark	ilde q o (q,q'W) ilde G
gluino	$ ilde{g} o g ilde{G}$


also co-NLSP's in degenerate cases.....

LSP = gravitino, $m_{\tilde{G}} = eV - keV$

Phenomenology characterized by *nature and lifetime* of the NLSP! (NLSP $\tilde{X} \rightarrow X\tilde{G}$ decays; prompt / macroscopic / outside detector)

NLSP	decay mode
gaugino-like neutralino	$ ilde{\chi}^0_1 o (\gamma, Z) ilde{G}$
higgsino-like neutralino	$ ilde{\chi}^0_1 o h ilde{G}$
stau	$ ilde{ au}_1 o au ilde{G}$
slepton	$ ilde{\ell}_R o \ell ilde{G}$
squark	ilde q o (q,q'W) ilde G
gluino	${ ilde g} o g { ilde G}$


also co-NLSP's in degenerate cases.....

GMSB adds a vast variety of possible signals

Baer et al., 1998; Hinchliffe, Paige, 1998; Ambrosanio et al., 2000; Diaz-Cruz, Ghosh, Moretti, 2003; Kawagoe et al., 2003.

ANOMALY MEDIATION

In AMSB, SUSY-breaking fields are placed on one 3-brane and MSSM fields on another. Supergravity contributions are thus suppressed geometrically.

The MSSM soft terms are then generated by loop-suppressed contributions of order $\sim (1/16\pi^2) \langle F \rangle / M_P$ arising from the 'super-Weyl anomaly'.

ANOMALY MEDIATION

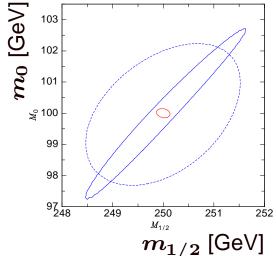
Peculiar gaugino mass spectrum: $M_2 \sim \frac{1}{3}M_1$. The lightest states are hence a triplet of Winos

NLSP:
$$ilde{\chi}_1^\pm pprox ilde{W}^\pm$$

LSP: $ilde{\chi}_1^0 pprox ilde{W}^0$

with a typical mass splitting of $\mathcal{O}(100)$ MeV ! $ilde{\chi}_1^\pm o ilde{\chi}_1^0 \pi^\pm$

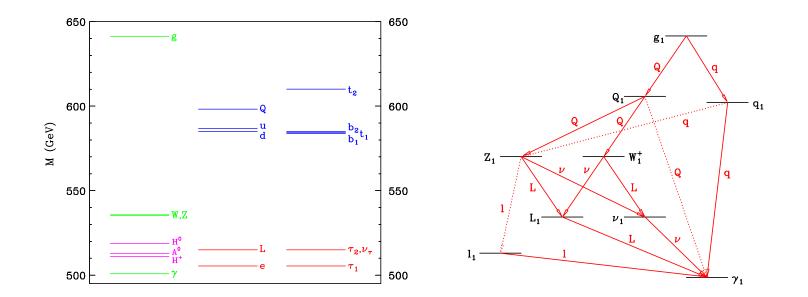
Another unique feature is the near-degeneracy of \tilde{l}_L and \tilde{l}_R .


 \rightarrow yet another new class of SUSY signatures.

F.E. Paige, J.D. Wells, hep-ph/0001249, H. Baer, J.K. Mizukoshi, X. Tata, hep-ph/0007073, A.J. Barr, et al., hep-ph/0208214; A. Datta, K. Huitu, hep-ph/0211319.

PARAMETER DETERMINATION

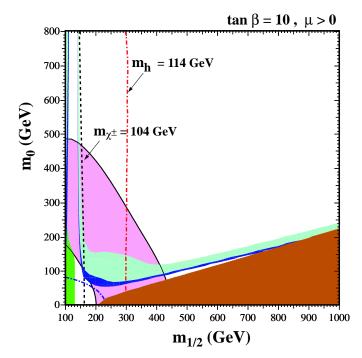
- Different models feature different (though sometimes similar) characteristics of the sparticle spectrum
 - \rightarrow few parameters, predictive, good for benchmarking, etc.
- Once SUSY is discovered: want to relate observations to the underlying model parameters and ultimatly determine the high-scale structure of the theory!
 - good strategy, relevant measurements
 - sophisticated computational tools
 - careful assessment of uncertainties


Top-down fit [ATLAS TDR], Discrimination analysis [Allanach, Grellscheid] Bottom-up reconstruction [Blair, Porod, Zerwas] Sfitter, Fittino, SPA project ...

 \rightarrow Tilman Plehn's talk in the SUSY session.

FAKE SUSY ?

Universal extra dimensions: 1st level of KK modes may look like SUSY (except for spin)

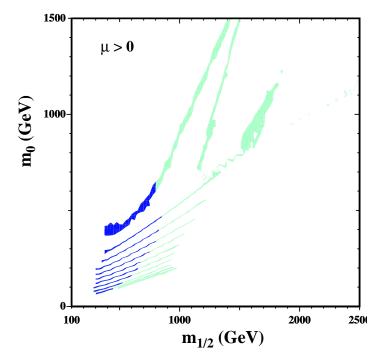

[Cheng, Matchev, Schmaltz, hep-ph/0205314]

LSP is a very good CDM candidate

- neutralino
- gravitino
- axino

WMAP: $0.094 < \Omega h^2 < 0.129$

hot topic, flood of papers constraining SUSY this way mSUGRA, $A_0 = 0$, aneta = 10


Ellis, Olive, Santoso, Spanos hep-ph/0303043

LSP is a very good CDM candidate

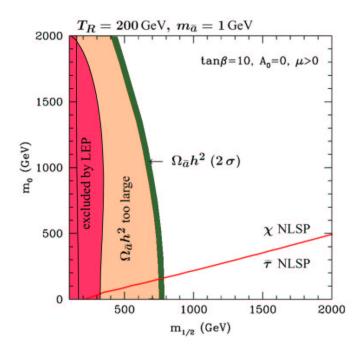
- neutralino
- gravitino
- axino

WMAP: $0.094 < \Omega h^2 < 0.129$

hot topic, flood of papers constraining SUSY this way mSUGRA, $A_0 = 0$, aneta = 5, 10

Ellis, Olive, Santoso, Spanos hep-ph/0303043

see also Baltz, Gondolo hep-ph/0307039


LSP is a very good CDM candidate

- neutralino
- gravitino
- axino

WMAP: $0.094 < \Omega h^2 < 0.129$

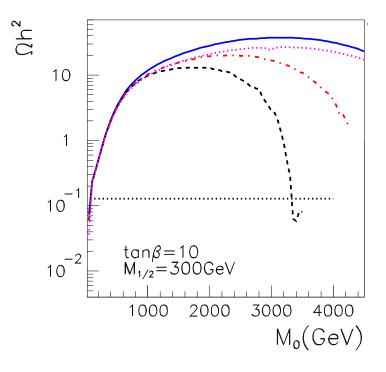
hot topic, flood of papers constraining SUSY this way

mSUGRA + axino

Covi et al., hep-ph/0402240

axino = LSP $ilde{\chi}^0_1 o (\gamma, Z) \, ilde{a}$ or $ilde{ au}_1 o au ilde{a}$

LSP is a very good CDM candidate


- neutralino
- gravitino
- axino

WMAP: $0.094 < \Omega h^2 < 0.129$

hot topic, flood of papers constraining SUSY this way

very model/scenario dependent, uncertainties not taken into account

 \rightarrow talk by Genevieve Belanger (hep-ph/0402161).

CP VIOLATION

Soft-breaking parameters can have CP-violating phases, e.g.

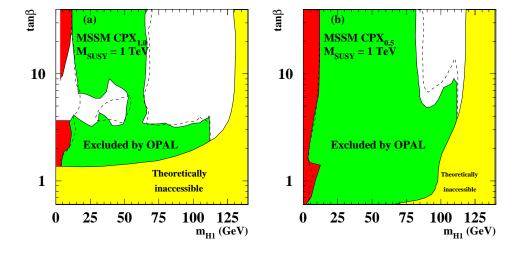
$$M_1 = |M_1| \, e^{i \phi_1}, \quad A_t = |A_t| \, e^{i \phi_t}, \quad$$

Very interesting possibility since

- CPV is still an open question in the SM
- we need additional sources of CPV to explain the observed baryon asymmetry in the Universe

see e.g., Dine, Kusenko, hep-ph/0303065

SUSY CP phases are heavily constrained by EDMs. However, these constraints are model dependent; some phases can still be large.


 \Rightarrow can considerably change phenomenology

CP VIOLATION

Consequences of CPV phases:

- Higgs-sector CP mixing: $h^0, H^0, A^0 \rightarrow H_1^0, H_2^0, H_3^0$, no longer pure scalar or pseudoscalar states !
- cross sections and branching ratios can change significantly, e.g., $gg \to H$, $\tilde{\chi}^0_2 \to H \tilde{\chi}^0_1$, $\tilde{b} \to b \tilde{\chi}^0$, ...
- CP asymmetries, polarization effects (mainly @ LC)

LEP Higgs limits change completely: OPAL collab., hep-ex/0406057

\rightarrow talk by Rohini Godbole

CP and non-standard Higgs study group, http://cern.ch/kraml/cpnsh/

LEPTON FLAVOR VIOLATION

neutrino oscillations → neutrino masses and mixing first real BSM signal!

In SUSY, neutrino masses can be generated through

- the usual see-saw mechanism, adding a heavy ν_R
- R-parity violation (lepton-neutralino mixing, rad. corr.)

Massive neutrinos in turn

- affect the \tilde{l} mass matrix by RG running and virtual corrections
- lead to LFV in the charged lepton sector ($au
 ightarrow \mu\gamma, \mu
 ightarrow e\gamma,...$)
- lead to LFV in processes with sleptons and sneutrinos (SLFV), e.g. $\tilde{\chi}^0_2 \rightarrow \tilde{\tau} \tau \rightarrow e \tau \tilde{\chi}^0_1$

Very popular topic, vast literature developing, large signals possible @ LHC

 \rightarrow talk by Werner Porod

CONCLUSIONS

SUSY phenomenology is extremely rich:

- Different SUSY-breaking scenarios can lead to quite different characteristics of the spectrum.
- SUSY dark matter: neutralino, gravitino, axino, ... ?
- CP violation, lepton flavor violation, ... ?
- SUSY + extra dimensions ?
- Need to search with an open mind!

CONCLUSIONS

SUSY phenomenology is extremely rich:

- Different SUSY-breaking scenarios can lead to quite different characteristics of the spectrum.
- SUSY dark matter: neutralino, gravitino, axino, ... ?
- CP violation, lepton flavor violation, ... ?
- SUSY + extra dimensions ?
- Need to search with an open mind!

Though playing with sticks

CONCLUSIONS

SUSY phenomenology is extremely rich:

- Different SUSY-breaking scenarios can lead to quite different characteristics of the spectrum.
- SUSY dark matter: neutralino, gravitino, axino, ... ?
- CP violation, lepton flavor violation, ... ?
- SUSY + extra dimensions ?
- Need to search with an open mind!

Though playing with sticks

