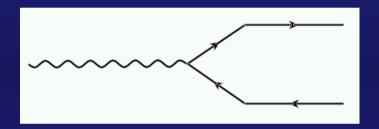
Photoproduction of Heavy Vector Mesons at the LHC

Joakim Nystrand Department of Physics and Technology, University of Bergen, Norway

In collaboration with Spencer Klein, LBNL, Berkeley

Physics at LHC

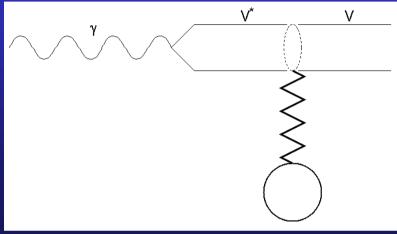

13-17 July 2004 . Vienna . Austria

13-17 July 2004

Physics at LHC, Vienna

Photoproduction of heavy Vector Mesons -A probe of the nucleon/nucleus gluon density The photon wave function can be written as a Fock decomposition:

$$|\gamma\rangle = C_{\text{bare}} |\gamma_{\text{bare}}\rangle + C_{\rho} |\rho\rangle + C_{\omega} |\omega\rangle + C_{\phi} |\phi\rangle + \dots + C_{q} |qq\rangle$$


A photon is not always a photon... With a certain probability it will appear as a $q\overline{q}$ flucutuation

Conservation of quantum numbers (γ : J^P = 1⁻) \Rightarrow The photon tend to fluctuate to a vector meson (ρ , ω , ϕ , J/ Ψ). Vector Meson Dominance.

13-17 July 2004

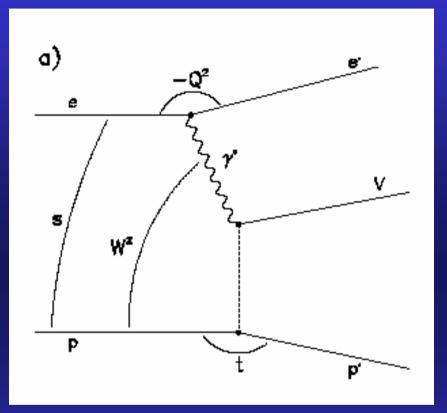
Physics at LHC, Vienna

A photon in the vector meson state will interact strongly (hadronically). The hadronic component can materialize if the virtual qq-pair is knocked on mass shell.

The probability to find the photon in the vector meson state V:

$$C_V = \frac{\sqrt{4\pi\alpha_{em}}}{f_V}$$

 f_V – photon-vector-meson coupling


Vector Meson Dominance:

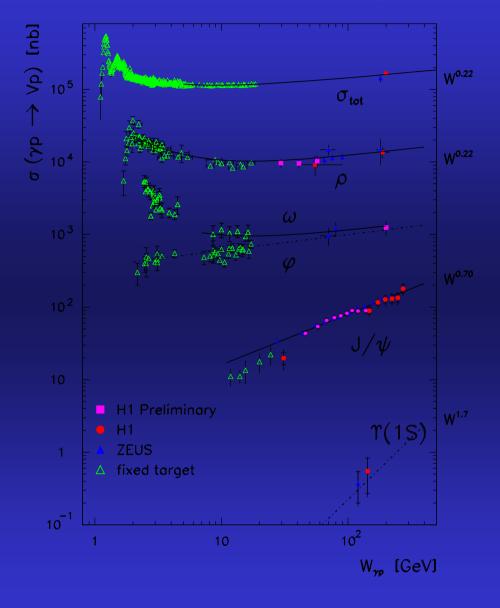
$$\frac{d\sigma}{dt}(\gamma A) = C_V^2 \frac{d\sigma}{dt}(VA)$$

13-17 July 2004

Physics at LHC, Vienna

Studied at HERA in ep collisions:

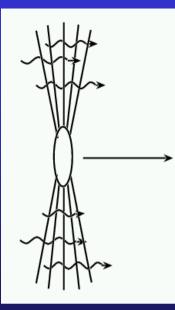
 $W_{\gamma p}$: photon-proton CM energy


t: (momentum transfer from proton)²

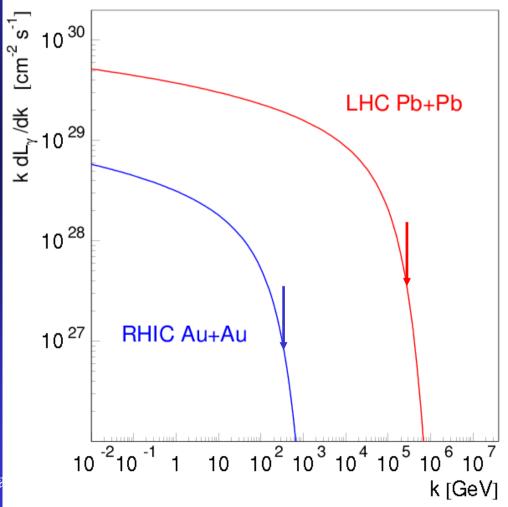
-Q² : virtuality of the photon; for protons or nuclei, Q² \approx 0.

13-17 July 2004

Physics at LHC, Vienna


Summary of HERA Results

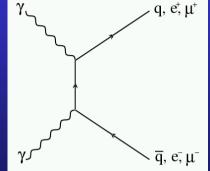
- $W_{\gamma p}$ up to 200 GeV • $\rho^0 \leftrightarrow 10\%$ of σ_{TOT} • Light mesons: $\sigma \propto W_{\gamma p}^{0.22}$ • J/Ψ: $\sigma \propto W_{\gamma p}^{0.80}$
- a few tens of Y seen


13-17 July 2004

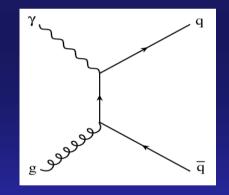
Physics at LHC, Vienna

Electromagnetic field ↔An equivalent flux of photons. (Fermi 1924, Weizsäcker-Williams 1935)

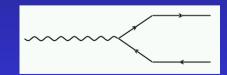
Equivalent photon luminosity


The photon spectrum extends to $\sim \gamma/R$ $\Leftrightarrow W_{\gamma p} \approx 1000 \text{ GeV}$ in Pb+Pb collisions $(Q^2 \approx 0)$

13-17 July 2004


Physics a

Ultra-peripheral Interactions Menu


1. Purely electromagnetic, two-photon

2. Photonucleara) directExample: gamma+gluon

b) resolved Vector Meson Dominance

13-17 July 2004

Physics at LHC, Vienna

<u>Calculation of Vector Meson cross sections in</u> <u>Heavy-Ion Interactions</u>

Phenomenological model based on scaling data of γp to γA. J. Nystrand, S. Klein PRC 60(1999)014903

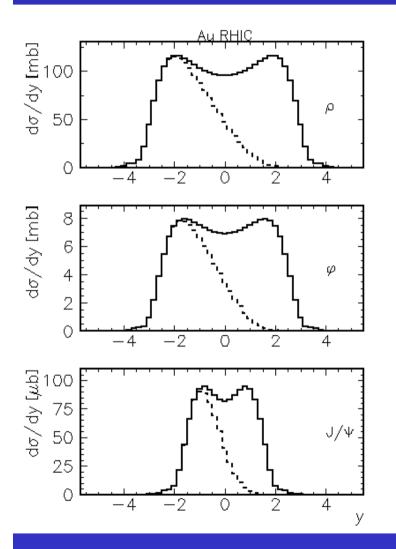
The ingredients:

Photon spectrum: Weizsäcker-Williams

Input photon-nucleon data:

parameterized from results at HERA and fixed target

Scaling $\gamma p \rightarrow \gamma A$:


1) Neglecting cross terms - γ fluctuates into V which scatters elastically

2) Shadowing through a Glauber model

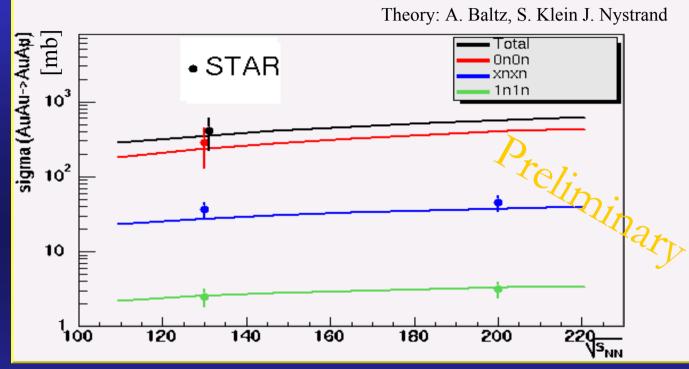
3) nuclear momentum transfer from Form factor

Physics at LHC, Vienna

The model predicts cross sections, rapidity and p_T distributions of vector mesons at RHIC and LHC. For Au+Au 200 GeV at RHIC:

 σ [mb] (prod. rate)

ρ	590	(120 Hz)
ω	59	(12 Hz)
φ	39	(7.9 Hz)
J/ψ	0.29	(0.058 Hz)


Cross sections in the 1-600 mb range!

The p_T distribution determined by the nuclear Form Factor, $p_T \sim 1/R \sim 50$ MeV/c

13-17 July 2004

Physics at LHC, Vienna

Data on Au+Au \rightarrow Au+Au+ ρ^0 at RHIC in good agreement with calculations

STAR Collaboration, Quark Matter 2002

 \Rightarrow Triggering + Analysis techniques work; photon spectrum and basic photonuclear cross sections well understood.

13-17 July 2004

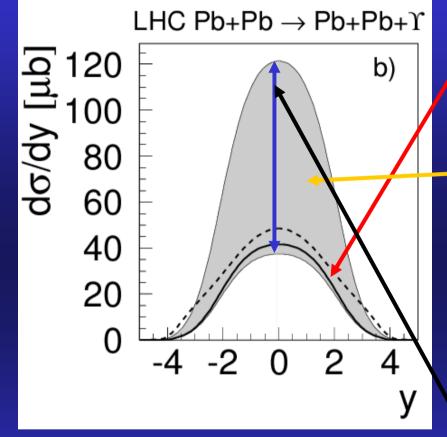
Physics at LHC, Vienna

γp data from HERA $J/\Psi: \sigma = 1.5 W_{\gamma p}^{0.80}$ [nb, W in GeV] \Rightarrow Extrapolate this to LHC energies Too little data on Υ, QCD predicts

$$\frac{d\sigma}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xg(x, \frac{M_V^2}{4})]^2 \quad \text{Ryskin}$$

Further developments: Martin,Ryskin,Tubner Phys. Lett B 454 (1999)339 and Frankfurt,McDermott,Strikman JHEP 02(1999)002. \Rightarrow Can be parameterized as

 $\Upsilon: \sigma = 0.06 \text{ W}_{\gamma p}^{1.7} \text{ [pb, W in GeV]}$


13-17 July 2004

Physics at LHC, Vienna

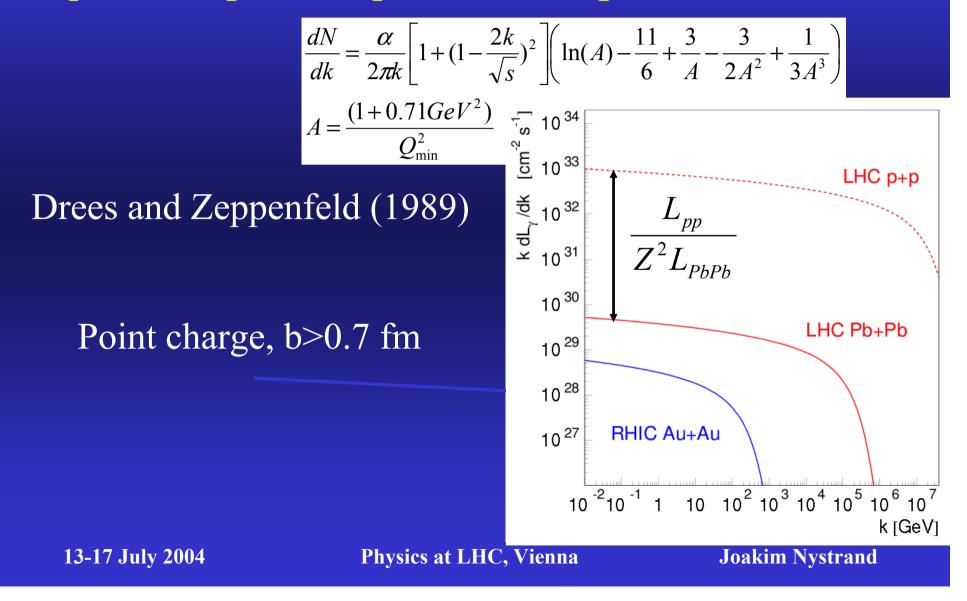
Joakim Nystrand

1993

Υ in ultra-peripheral Pb+Pb collisions at the LHC

A² scaling of QCD prediction

A² scaling of exp. data from HERA.


Uncertainty in measured cross section (mainly poor statistics).

Mid-rapidity y=0 \Leftrightarrow $\gamma p CM energy W_{\gamma p} = 230 GeV,$ $x=2\cdot 10^{-3}$

13-17 July 2004

Physics at LHC, Vienna

What can one expect in $pp/\overline{p}p$? Equivalent photon spectrum of a proton:

$\sigma(pp \rightarrow pp+V)$

$$\frac{d\sigma}{dy} = k \frac{dn_{\gamma}}{dk} \sigma(\gamma p \to V p)$$

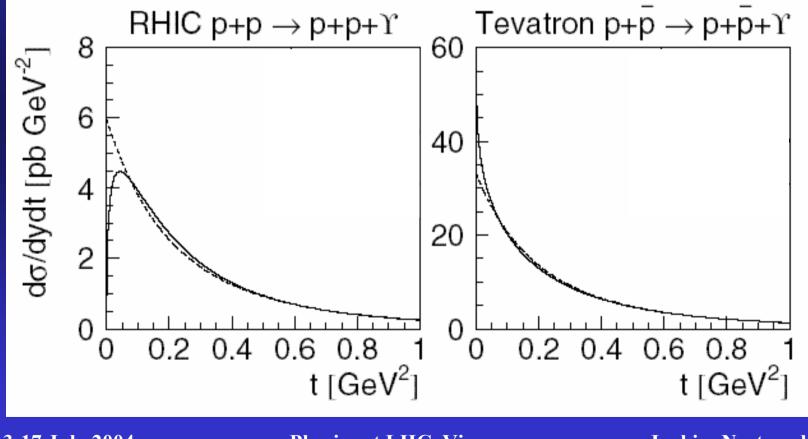
Drees&Zeppenfeld Tevatron p+ $\bar{p} \rightarrow$ p+ \bar{p} +J/ Ψ RHIC p+p \rightarrow p+p+J/ Ψ 1.2 photon spectrum [qu] λp/op 1.5 1 [d a) b) λp/2 0.6 0.4 point charge, b>1fm 0.5 0.2 0 0 -2 2 -5 0 5 0 4 -4 ٧ ٧ Tevatron $p+\bar{p} \rightarrow p+\bar{p}+\Upsilon$ LHC p+p \rightarrow p+p + Υ 1.6 da/dy [pb] da/dy [nb] 50 .4 .2 C) ď 40 30 20 0.8 0.6 0.4 Uncertainty in experimental cross section (mainly poor 0.2 0 statistics). 5 У -5 -2.5 2.5 -5 5 0 0 y

13-17 July 2004

Physics at LHC, Vienna

$$\sigma(pp \rightarrow pp + V)$$

$$\frac{d\sigma}{dy} = k \frac{dn_{\gamma}}{dk} \sigma(\gamma p \rightarrow Vp)$$
Kinematics at mid-rapidity (y=0)
$$J/\psi \qquad \Upsilon$$
Tevatron $W_{\gamma p} = 80 \text{ GeV } x \approx 1 \cdot 10^{-3} \qquad W_{\gamma p} = 130 \text{ GeV } x \approx 5 \cdot 10^{-3}$
LHC $W_{\gamma p} = 210 \text{ GeV } x \approx 2 \cdot 10^{-4} \qquad W_{\gamma p} = 350 \text{ GeV } x \approx 6 \cdot 10^{-4}$
Lower x can be reached away from y=0, but separation

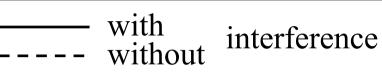

of photon-emitter and photon-target non-trivial.

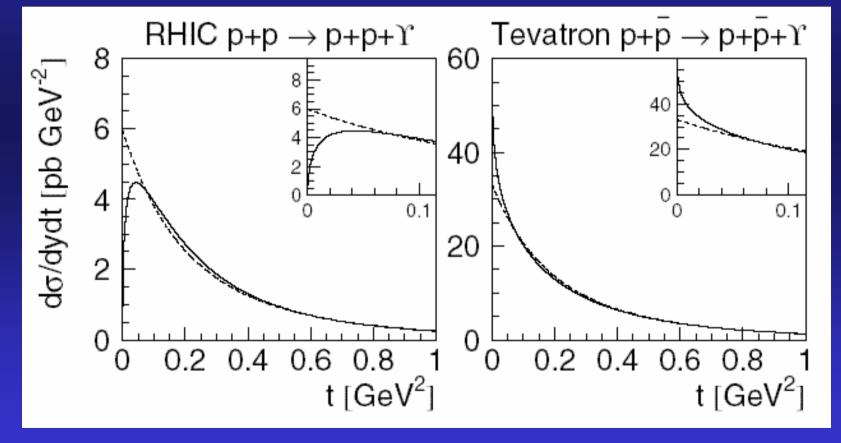
13-17 July 2004

Physics at LHC, Vienna

Transverse momentum spectrum

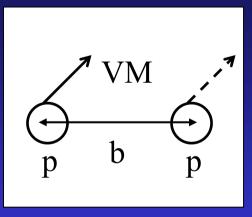
Dominated by proton form factor Low $p_T < \sim 1 \text{ GeV/c}$




13-17 July 2004

Physics at LHC, Vienna

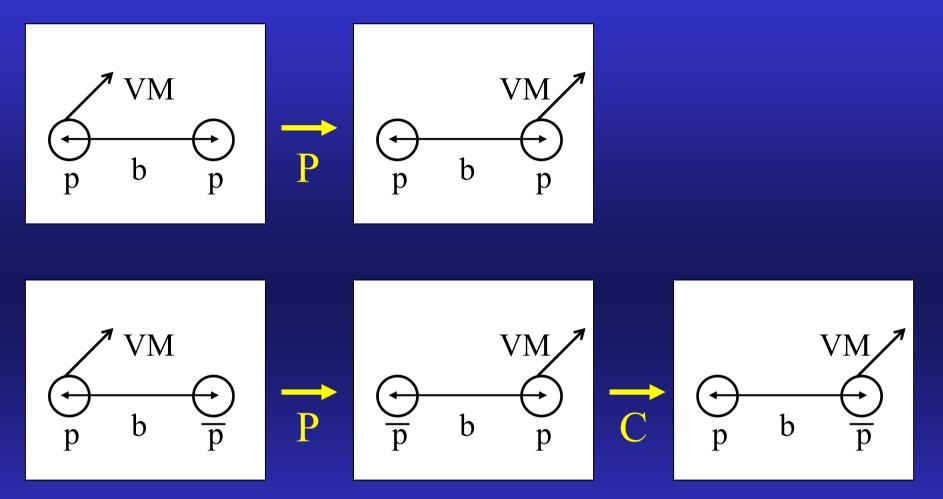
Transverse momentum spectrum


13-17 July 2004

Physics at LHC, Vienna

Transverse momentum spectrum

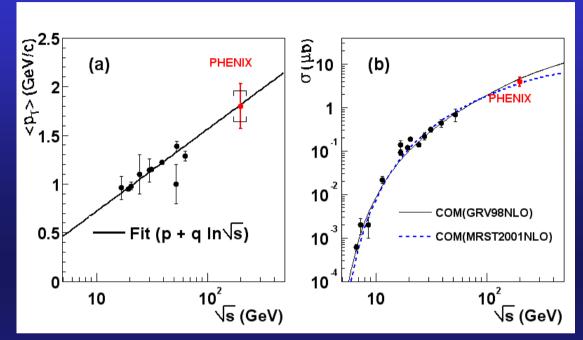
At very low p_T ($p_T \ll 1/\langle b \rangle$), not possible to distinguish photon-emitter and photon-target.


 \Rightarrow Add amplitudes (not cross sections) with correct sign.

13-17 July 2004

Physics at LHC, Vienna

Exchanging photon-emitter and photon-target


 $J^{PC} = 1^{--} \Rightarrow$ Destructive interference in pp (AA), constructive interference in pp.

13-17 July 2004

Physics at LHC, Vienna

Comparisons with hadronic production mode (pp)

J/Ψ RHIC, √s=200 GeV: $\sigma = 2.70\pm0.40$ μb Photoproduction: $\sigma \approx 7$ nb

S.S. Adler et al. (PHENIX Collaboration) PRL 92(2004)051802, $p+p \rightarrow J/\psi + X$

Tevatron, $\sqrt{s}=1.96$ TeV:

 $d\sigma/dy|_{y=0} = 30.4 \pm 3.1 \text{ nb}$

Photoproduction:

 $\left. d\sigma/dy \right|_{y=0} = 10\text{-}25 \text{ pb}$

13-17 July 2004

Υ

Physics at LHC, Vienna

Comparisons with hadronic production mode at LHC

 $pp \rightarrow \Upsilon$: hadronic: 0.15–0.28 µb* photo: 3.5 nb ratio: ~ 2.10⁻²

*ALICE PPR / R. Vogt

 $PbPb \rightarrow \Upsilon$:

Total hadronic (all centralities) $\sigma_{AA} \approx A^2 \sigma_{pp}$ hadronic: 6.5–12.1 mb photo: 170 µb ratio: ~ 2.10⁻²

Much better background rejection in PbPb: a) Higher multiplicities (hadronic interactions) b) Coherence \Rightarrow photoproduced Υ w/ very low p_T

13-17 July 2004

Physics at LHC, Vienna

In pp, hadronic 'background' must be suppressed by a factor 10³!

Rapidity gaps:

 $< dn_{ch}/dy > \approx 4 - 6$ in pp at Tevatron/LHC

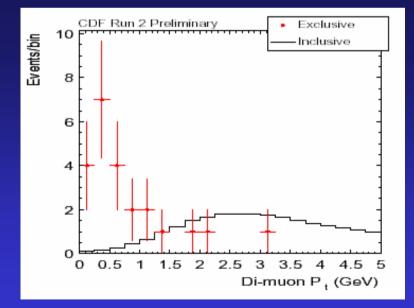
Probability of having a gap of width Δy :

 $\exp(-\langle dn_{ch}/dy \rangle \cdot \Delta y)$

 $\Rightarrow \Delta y \approx 2$ will be sufficient

Further rejection from p_T distribution, $p_T < 1$ GeV/c

13-17 July 2004


Physics at LHC, Vienna

Some indication of J/ ψ at the Tevatron Presented at "Small-x and Diffraction", Fermilab, September 2003 (CDF Collaboration, Angela Wyatt) Searched for $p\overline{p} \rightarrow p\overline{p} + \chi_c$ via Pomeron-Pomeron,

 $\chi_{\rm c} \rightarrow {\rm J}/~\psi + \gamma$

Found also a sample of J/ ψ 's without γ 's !

 p_T distribution of exclusive J/ ψ :s:

13-17 July 2004

Physics at LHC, Vienna

Kinematics at mid-rapidity - pp vs. PbPb W_{γp} – photon-proton CM energy x - Bjorken-x of gluon γ y=0 J/ψ **Tevatron** $W_{y_0} = 80 \text{ GeV } x \approx 1 \cdot 10^{-3}$ $W_{\gamma_0} = 130 \text{ GeV} \text{ x} \approx 5 \cdot 10^{-3}$ LHC pp $W_{\gamma p} = 210 \text{ GeV } x \approx 2 \cdot 10^{-4} \qquad W_{\gamma p} = 350 \text{ GeV } x \approx 6 \cdot 10^{-4}$ $LHC PbPb W_{\gamma p} = 130 \text{ GeV } x \approx 6 \cdot 10^{-4} \qquad W_{\gamma p} = 230 \text{ GeV } x \approx 2 \cdot 10^{-3}$

13-17 July 2004

Physics at LHC, Vienna

Note: AA and pp competitive for selected reaction channels/final states.

Not suitable for measuring $\sigma_{tot}(\gamma\gamma)$ or $\sigma_{tot}(\gamma p)$, for example.

- Tagging of beam-nuclei not possible.
- $Q^2 \approx \hbar/R \approx 0$.

• The corresponding QCD processes must suppressed.

Physics at LHC, Vienna

Summary

- Some more details in PRL 92(2004)142003 (hep-ph/0311164).
- Interesting possibility to study exclusive production of heavy vector mesons in pp and $p\overline{p}$ collisions, and in Ultra-peripheral AA collisions.
- A probe of the nucleon/nucleus gluon density at low Bjorken-x.
- Extends the energy range studied at HERA.