

Physics perspectives with the ALICE muon spectrometer

- \checkmark Heavy flavor production in heavy ion collisions at the LHC
- ✓ ALICE muon spectrometer performances
- ✓ Selected physics channels

Specificities of heavy flavor production in heavy ion collisions @ LHC

1

0.8

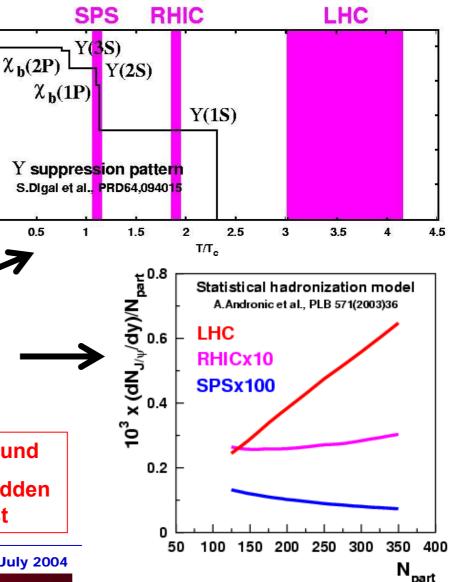
0.6

0.4

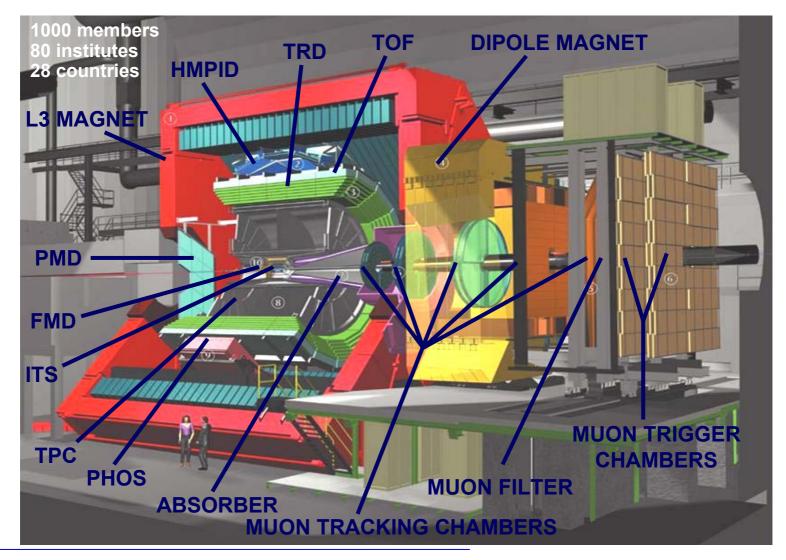
0.2

0

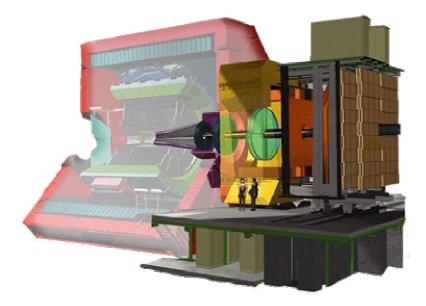
	N(qq) per central PbPb (b=0)					
	SPS	RHIC	LHC			
charm	0.2	10	120			
bottom		0.05	5			



• melting of Y(1S) by color screening

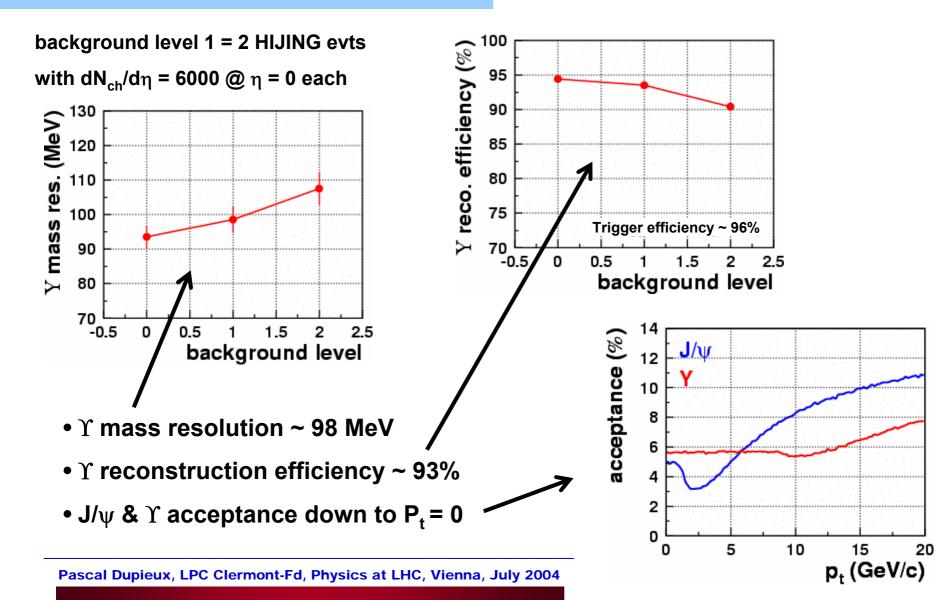

• large secondary production of charmonia thermal production, kinetic recombination, statistical hadronization, DD annihilation, B hadron decay

rich program & complex background

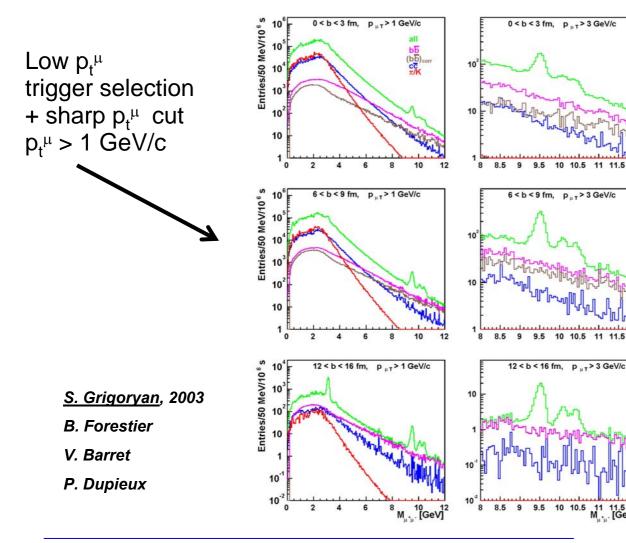

simultaneous measurements of hidden & open heavy flavors is a must

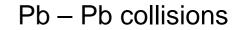
ALICE: 7(4) SPS(RHIC) experiments in one

Muon spectrometer shopping list



<u>Acceptance</u> : 2° < θ < 9° (2.5 < η < 4) • quarkonia :


resonances ρ , ω , ϕ , J/ ψ , ψ ', Υ , Υ ', Υ "


- versus P_t
- versus centrality
- versus reaction plane
- versus system-size
- open heavy flavors
 - single muon p_t distributions
 - unlike-sign dimuon @ high mass
 - unlike-sign dimuon @ low mass
 - like-sign dimuon
 - electron-muon coincidences
 - tri-muons in pp collisions

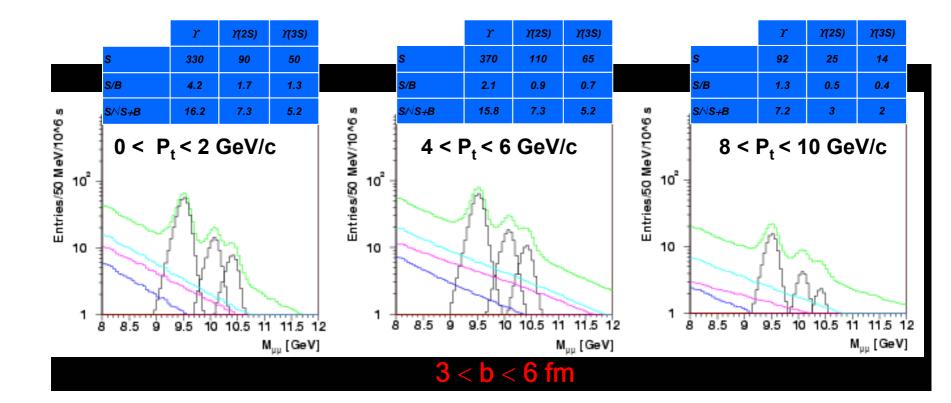
Spectrometer performances for high mass resonance measurements

Centrality dependence of quarkonium yield

11

11 11.5 1 M . [GeV]

High p_t^µ trigger selection + sharp p_t^{μ} cut $p_t^{\mu} > 3 \text{ GeV/c}$


Centrality dependence of quarkonium yield

- x-sections: CERN Yellow Report Hard Probes in Heavy Ion Collisions at the LHC (updated)
- no suppression/enhancement
- full & realistic simulation
 - J/ψ: large stat., S/B & sign. ok (allows much narrow centrality bins)
 - ψ ': small S/B
 - Y: good stat., S/B > 1, sign. ok
 - Y': good stat., S/B > 1, sign. ok
 - Υ": low statistics
- Large coverage in energy density

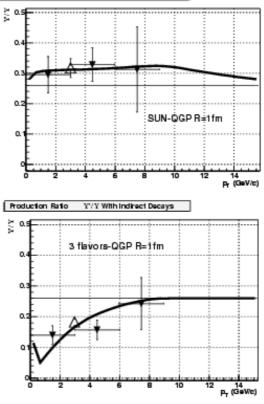
	PDPD, $\forall s = 5.5$ TeV, $L = 5.10^{-1}$ cm ⁻¹ s ⁻¹ , T=10 s, 2 σ mass-cut, ε assumes dN _{ob} /dy = 4000 @ y = 0 in central							
	b (fm)	0-3	3-6	6- 9	9 -12	12-16	min.	
	ε (GeV/fm³)	32	30	28	16	5	bias	
J /ψ	S (x10 ³)	86.48	184.6	153.3	67.68	10.46	502.4	
	S/B	0.167	0.214	0.425	1.237	6.243	0.28	
	S∕√S+B	111.3	180.4	213.8	193.4	94.95	331.5	
Ψ,	S (x10 ³)	1.989	4.229	3.547	1.565	0.24	11.57	
	S/B	0.009	0.011	0.021	0.063	0.273	0.015	
	S∕√S+B	4.185	6.902	8.604	9.641	7.171	12.95	
Y	S (x10 ³)	1.11	2.376	1.974	0.83	0.118	6.408	
	S/B	2.084	2.732	4.31	7.977	12.01	3.246	
	S∕√S+B	27.39	41.71	40.03	27.16	10.42	69.99	
¥,	S (x10 ³)	0.305	0.653	0.547	0.229	0.032	1.766	
	S/B	0.807	1.043	1.661	2.871	4.319	1.243	
	S∕√S+B	11.68	18.26	18.48	13.02	5.077	31.28	
۲	S (x10 ³)	0.175	0.376	0.312	0.13	0.019	1.012	
	S/B	0.566	0.722	1.18	1.936	3.024	0.867	
	S/√S+B	7.951	12.55	13	9.274	3.73	21.67	

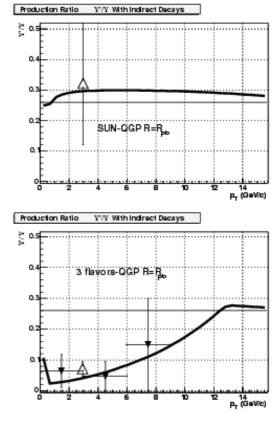
PbPb $\sqrt{s} = 5.5$ TeV L = 5.10^{26} cm⁻²e⁻¹ T-10⁶e

P_t dependence of quarkonium yield

Semi-central Pb-Pb collisions

1 month of data taking

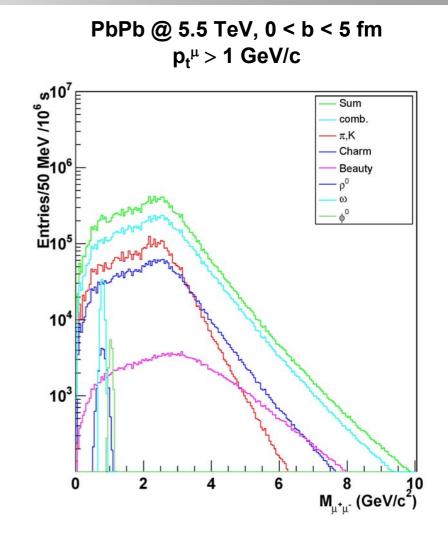

<u>A. De Falco</u>, 2004


Υ'/Υ ratio versus P_t

J.P.Blaizot and J.Y.Ollitrault, Phys. Lett. B 199 (1987) 499; F.Karsch and H.Satz, Z. Phys. C 51 (1991) 209; J.F.Gunion and R.Vogt, Nucl. Phys. B 492 (1997) 301

Production Ratio Y/YWith Indirect Decays

- Melting depends on
 - resonance formation time, dissociation temperature & P_t
 - QGP temperature, lifetime & size
- Ratio is flat in pp (CDF data)
- Any deviation from the pp (pA) value is a clear evidence for the QGP (nuclear effects cancel-out)
- The P_t dependence of the ratio exhibits sensitivity to the QGP characteristics



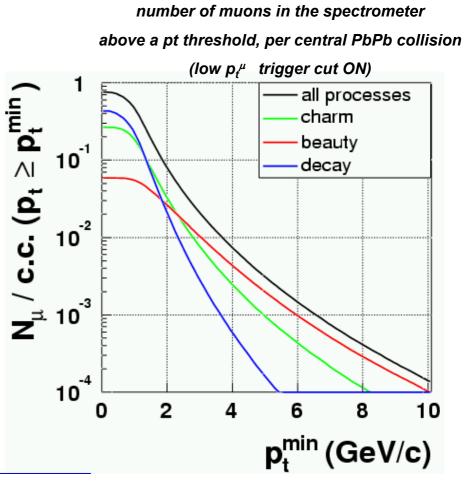
- full & realistic simulation
- error bars = 1 month of central Pb-Pb (10%)

E. Dumonteil, PhD Thesis (2004)

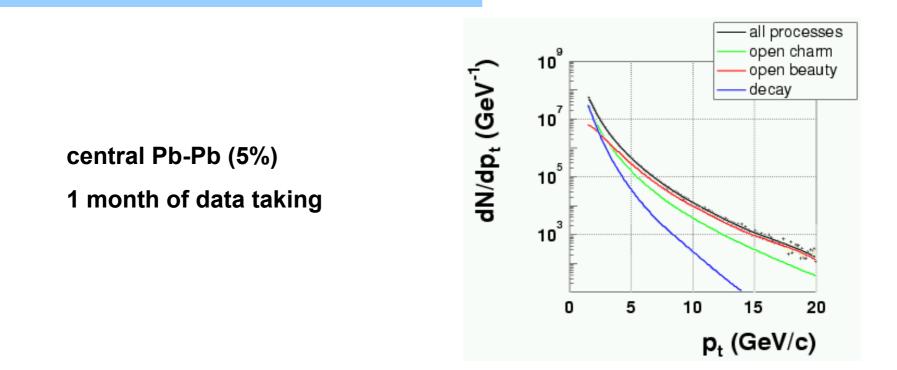
Low mass resonances

- probe medium characteristics (CERES @ SPS)
- analysis limited to $p_t^{\mu} > 1$ GeV/c (trigger threshold for J/ ψ) => low acceptance
- for ω : S~5 10⁴, S/B~ 0.1, Significance~63 in one month of data taking

<u>B. Rapp</u>, PhD Thesis (2004)


Open heavy flavor measurements

Motivations for measuring open heavy flavors


- in pp : baseline program
- in pA : cold medium effects
- in AA : hot medium effects
- ⇒ most natural reference to quarkonia suppression/enhancement

The ALICE muon spectrometer is well suited for open heavy flavor measurements

 \Rightarrow large fraction of (single) muons from charm and bottom decay for $p_t{}^{\mu}$ >~ 2GeV/c

Open bottom from single muon

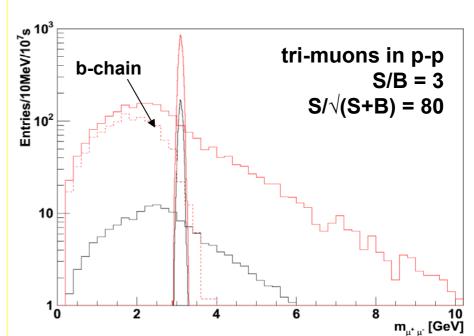
p _t ^μ (GeV/c)	1.5-3	3-6	6-9	9-30
\mathbf{N}_{μ} from b	5.3 10 ⁶	1.7 10 ⁶	0.14 10 ⁶	0.03 10 ⁶

very large statistics is expected

Pascal Dupieux, LPC Clermont-Fd, Physics at LHC, Vienna, July 2004

<u>R. Guernane</u>, (2004)

Open bottom from unlike-sign dimuon


Open bottom from tri-muon events in pp collisions

- J/ ψ peak (at low Pt) in dimuon p-p evts consists of :
 - \checkmark 85% of primary J/ ψ
 - \checkmark 15% of J/ ψ from b decay
- Correlated tri-muons however <u>can only</u> origin from b:
 - ✓ J/ψ peak dominated by b-bbar → J/ψ+µ + X → 3µ + X

 \downarrow

 \bullet tri-muons offer a way to measure the fraction of secondary J/ ψ w/o direct tagging and select a "clean" beauty sample

- doable in pp and pA
- very difficult in central Ar-Ar
- excluded in Pb-Pb

Summary and outlook

- Very exciting Physics program foreseen with the ALICE muon spectrometer
 - ✓ Quarkonia
 - ✓ Open heavy flavors
- Promising performances of the experimental setup
- Spectrometer capabilities to be investigated in more detail for few channels like
 - ✓ Quarkonia and heavy flavor flow
 - ✓ Like-sign dimuons
 - ✓ Electron-muons coincidences
- Results will be published in the Physics Performance Report of ALICE