Lecture 2 The gauge sector

T

The tree level predictions

v, g, g' \Rightarrow the boson masses, M_W, M_Z , their self-interactions and their interactions with matter, all read off (!?) from \mathcal{L}

$$gW_{\mu}^{+}J_{\mu}^{-} + h.c., \quad J_{\mu}^{-} = \bar{u}\gamma_{\mu}d + \bar{\nu}\gamma_{\mu}e$$

$$eA_{\mu}J_{\mu}^{em}, \quad J_{\mu}^{em} = 2/3\bar{U}\gamma_{\mu}U - 1/3\bar{D}\gamma_{\mu}D - \bar{E}\gamma_{\mu}E, \quad e = g\sin\theta$$

$$\frac{g}{\cos\theta}Z_{\mu}J_{\mu}^{Z}, \quad J_{\mu}^{Z} = \bar{\Psi}\gamma_{\mu}(T_{3} - Q\sin^{2}\theta)\Psi \qquad \qquad U = u + (u_{c})^{C}$$

$$\equiv U_{Dirac}$$

Highly predictive: a great variety of phenomena from $l_{max} \approx 10^{-8} cm$ (Atomic Parity Violation) to $l_{min} \approx 10^{-16} \div 10^{-17} cm$ (HERA, LEP, TEVATRON)

[Note, however, that $l_{min} \approx G^{1/2}$] Riccardo Barbieri 2 ElectroWeak Interactions: Theory 2004

An example: Atomic Parity Violation

 ΔH_{PV} must be local and proportional to G

$$\Rightarrow \quad \Delta H_{PV} = \frac{G}{\sqrt{2}m_e} Q_W \sigma \cdot \nabla \delta^3(\mathbf{r}) \quad \text{or} \quad A_{PV} = \frac{G}{\sqrt{2}m_e} Q_W \sigma \cdot \mathbf{q}$$

2. From the Z-exchange diagram and \mathcal{L}

$$A_{PV} = \frac{G}{\sqrt{2}} (\bar{E}\gamma_{\mu}\gamma_{5}E)(c_{u}\bar{U}\gamma_{\mu}U + c_{d}\bar{D}\gamma_{\mu}D) \qquad \begin{array}{l} c_{u} = -1/2 + 4/3\sin^{2}\theta \\ c_{d} = 1/2 - 2/3\sin^{2}\theta \end{array}$$

so that, by comparison, in the NRL (!?)
$$Q_{W} = -2(c_{u}n_{u} + c_{d}n_{d}) = (2 - 4\sin^{2}\theta)Z - A$$

3. From the measured S-P mixing in Ce_{55}^{133} induced by ΔH_{PV}

$$Q_W|_{exp} = 72.69(48)$$
 $Q_W|_{th} = 73.19(3)$

Riccardo Barbieri

3

3 low-energy neutral-current measurements aliminal **APV** Qw(Cs) 0.2292 ± 0.0019 vN-scattering NuTeV 0.2361 ± 0.0017 Moller scattering E158 0.2330 ± 0.0015 PDG2002 $0.2311 \pm 0.0002 \pm 0.0006$ (Langacker) 0.22 0.225 0.23 0.235 0.240.245 0.25 $sin^2\theta_W(M_{\bar{Z}})$

Riccardo Barbieri

Radiative effects

The prototype examples:

$$\frac{(g-2)_e}{2} \equiv a_e = a_e(QED) + a_e(Ad) + a_e(Ab)$$
$$a_e(QED) = \sum_n C_n^e (\frac{\alpha}{\pi})^n$$
From $\alpha^{-1}(at.int.) = 137.03600030(100)$ $\frac{\Delta\alpha}{\alpha} = 7.4 \cdot 10^{-9}$
$$a_e(th) = 1159652182.3(8.5) \cdot 10^{-12}$$
 versus
$$a_e(exp) = 1159652185.9(3.8) \cdot 10^{-12}$$

Remarkable, but a pure QED effect (contained in \mathcal{L})

5

Riccardo Barbieri

Radiative effects

The prototype examples (continued):

2
$$\frac{(g-2)_{\mu}}{2} \equiv a_{\mu}$$
 probes distances $\frac{m_e}{m_{\mu}}$ smaller than a_e
so that $\frac{\delta a_e}{\delta a_{\mu}}|_{univ} = (\frac{m_e}{m_{\mu}})^2$
 $a_{\mu} = a_{\mu}(QED) + a_{\mu}(had) + a_{\mu}(EW)$
 $a_{\mu}(exp) = 116592080(60) \cdot 10^{-11}$ $\frac{\Delta a_{\mu}}{a_{\mu}} = 5 \cdot 10^{-7}$
 $a_{\mu}(EW) = 154(3) \cdot 10^{-11}$ depending on which data
one infers $a_{\mu}(had)$ from: upper (e+e-), lower (τ -decays)
More sensitive, yes, but also more uncertain
even apart from the τ / e+e- problem

6

Riccardo Barbieri

Riccardo Barbieri

The ElectroWeak Precision Tests (Z and W prop.s)

Riccardo Barbieri

8

Infact the EWPT bring together:

A. The gauge sector $(\frac{g^2}{4\pi}, \frac{g\prime^2}{4\pi})$ B. The flavor sector, through $\lambda_t Q_3 t \phi$ $(\frac{\lambda_t^2}{4\pi} = \frac{Gm_t^2}{8\pi^2\sqrt{2}})$ C. The EWSB sector, mostly through $\frac{g^2}{4\pi} \log m_h$ About A - In principle not different from the standard $\frac{e^2}{4\pi}$ expansion of QED, but with exchanged W's and Z's

About B - In fact, these effects (the dominant part) can be most easily computed with g = g' = 0, hence in a theory of top/bottom quarks, the Higgs h and the (unphysical) Goldstones (π 's)

The leading corrections of type B(!?)

⇒ clearly visible effects, used to get a range of top masses before the actual discovery (in 1993 $m_t = 120 \div 160 GeV$), now almost a background

Current comparison (2004)

Riccardo Barbieri

About the Higgs mass dependence

In the limit of infinite Higgs mass, $(m_h^2 = 4\lambda v^2: \lambda \to \infty)$ divergences appear: log's at 1 loop, quadratic at 2 loops. In the perturbative regime ($\lambda \le 4\pi$ or $m_h \le 1-2$ TeV) the log's dominate, with 2 effects only (!?):

which spread in the various observables with $\log \Lambda \rightarrow \log m_h$

12

Riccardo Barbieri

Current comparison (2004)

The Higgs mass indirect determination in the SM

(more on this later in Lecture 5)

The foreseeable (?) future in EWPT

At present 3 main (relatively) uncertain parameters: $m_t, m_h, \alpha(M_Z)$ \Rightarrow 4 more precise measurements needed for a better test

	now	LHC	LC	Giga-Z
$\delta sin^2 \Theta_{eff}(10^{-5})$	16 (?)	15	?	1.3
$\delta M_W[MeV]$	34	15	10	7
$\delta M_t[GeV]$	4.3	1.0	0.2	0.1
$\Rightarrow rac{\delta m_h}{m_h}$	60%	15-20%	10-15%	5-10%

(A future improved $\alpha(M_Z)$?)

Riccardo Barbieri