Lecture 3 Flavor and CP

Riccardo Barbieri

3 Theorems

(in spite of the many parameters in $\mathcal L$)

Theorem 1: Neglecting neutrino masses, L_e, L_μ and L_τ are separately conserved (and CP is exact in the lepton sector)

Proof:
$$\mathcal{L}^{(lept)} = i\bar{L}_i \not DL_i + i\bar{e}_i^c \not De_i^c + e_i\lambda_{ij}^e e_j^c(v+h) + (N-terms)$$

Since $\lambda^e = V_L^T \lambda_d^e V_R$ with "d" for "diagonal"
can redefine
 $V_R e^c \Rightarrow e_{ph}^c \qquad V_L L = \begin{pmatrix} V_L v \\ V_L e \end{pmatrix} \Rightarrow \begin{pmatrix} v_{ph} \\ e_{ph} \end{pmatrix} \equiv L_{ph}$
so that
 $\mathcal{L}^{(lept)} = i\bar{L}_{ph} \not DL_{ph} + i\bar{e}_{ph}^c \not De_{ph}^c + e_{ph}^T \lambda_d^e e_{ph}^c(v+h) + (N-terms)$
essential that v and e are rotated

2

essential that v and e are rotated simultaneously, since

 $Z_{\mu}\bar{e}\gamma_{\mu}e, \quad Z_{\mu}\bar{\nu}\gamma_{\mu}\nu$ Riccardo Barbieri $W_{\mu}\bar{e}\gamma_{\mu}\nu$

ElectroWeak Interactions: Theory 2004

 $(m_e e e_c + m_\mu \mu \mu_c + m_\tau \tau \tau_c)(1 + h/v)$

Theorem 2: In the quarks, all flavor violations reside in the weak charged current amplitude proportional to a unitary matrix

$$\begin{array}{c}
 \underbrace{u_i = (u, c, t)}_{\mathbf{w}} \\
 \underbrace{v_i}_{d_j = (d, s, b)} \\
 \end{array} = V_{ij}A \quad \text{with} \quad VV^+ = \mathbf{1}
\end{array}$$

Proof:

$$\mathcal{L}^{(quarks)} = i\bar{Q} \not D Q + i\bar{u^c} \not D u^c + i\bar{d^c} \not D d^c$$

$$+ u^T U_L^T \lambda_d^u U_R u^c (v+h) + d^T D_L^T \lambda_d^d D_R d^c (v+h)$$

3

hence, this time, by going to the physical basis $W_{\mu}\bar{u}\gamma_{\mu}d \Rightarrow W_{\mu}\bar{u}_{ph}U_{L}D_{L}^{+}\gamma_{\mu}d_{ph}$ $= W_{\mu}\bar{u}_{ph}V\gamma_{\mu}d_{ph}$ with $V = U_{L}D_{L}^{+}$

Riccardo Barbieri

Theorem 3: Neglecting v-masses, CP is violated in as much as* V is "intrinsically" complex, i.e. a single phase δ is nonzero

Proof: Under a CP transformation, the overall \mathcal{L} is unchanged except for (!?)

 $gW_{\mu}^{+}\bar{u}\gamma_{\mu}Vd + gW_{\mu}^{-}\bar{d}\gamma_{\mu}V^{+}u \Rightarrow gW_{\mu}^{-}\bar{d}\gamma_{\mu}V^{T}u + gW_{\mu}^{+}\bar{u}\gamma_{\mu}V^{*}d$

4

Riccardo Barbieri

Testing the Theorems

Qualitative, but highly significant: L_e, L_μ and L_τ -Violations: the benchmark $BR(\mu \rightarrow e + \gamma) < 1.2 \cdot 10^{-11}$

Quantitative: (highly interrelated)

 $VV^{+} = 1$

Calculable Flavour Changing Neutral Current processes CP-asymmetries (A major change in the 2000's)

$$VV^{+} = \mathbf{1}$$

$$\Sigma_{i}|V_{ai}|^{2} = 1 \quad a = 1, 2, 3 \quad 3 \text{ rel.s (Type I)}$$

$$\Sigma_{i}V_{ai}V_{ib}^{*} = 0 \quad a \neq b \quad 6 \text{ rel.s (Type II)}$$

$$Type I: \qquad (Czarnecki et al, 2004)$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$VU^{+} = \mathbf{1}$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} + |V_{ub}|^{2} + |V_{ub}|^{2} = (Czarnecki et al, 2004)$$

$$V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} + |V$$

(

FCNC processes (genuine and calculable)

 Interesting because absent at tree level (Theor. 2: only the W-int.s produce flavor change!)

2. Genuine? E.g.: $b\bar{s} \rightarrow c\bar{c}$? No d 3. Calculable? E.g.: $sd \rightarrow d\bar{s}$? Yes this diagram, but how about its gluon dressing? It depends on the typical momentum of the int. lines: If small (≤ 1 GeV) no, if large yes. $\Delta m_{K\bar{K}}$ (the "real part") no (!?) ε_K (the "imag. part") yes (!?)

7

Riccardo Barbieri

The actual computation of a FCNC

1. The "short-distance" EW loop

: an effective operator \widehat{O} with a known coefficient C

2. The gluon dressing

:generally divergent $\Rightarrow C(\alpha_S \log \frac{M}{m}, \alpha_S) \quad M = M_W, m_t \quad m = m_c, m_b$

Need to resum all orders (RG)

3. The "matrix element" for the actual physical process

$$A_{i \to f} = C < f |\widehat{O}|i >$$

Riccardo Barbieri

The Flavor Precision Test (FPT) program (compare with the EWPT)

Genuine FCNC processes induced by a "calculable" loop

			1 11
$\mathbf{\epsilon}_K$	$\bar{s}d \rightarrow \bar{ds}$	1%	5-10%
ε _K /	$\bar{s}d ightarrow \bar{q}q$	10%	100%
$K^+ o \pi^+ u ar{ u}$	$\bar{s}d \rightarrow \bar{v}v$	70%	5%
Δm_{B_d}	$ar{b}d ightarrow ar{d}b$	1%	10%
$A_{CP}(B_d \to \Psi K_S)$	$ar{b}d ightarrow ar{d}b$	5%	<1%
$B_d \rightarrow X_s + \gamma$	$b \rightarrow s + \gamma$	10%	5-10%
$B_d \rightarrow X_s + l\bar{l}$	$b \rightarrow s + l\bar{l}$	20%	5-10%

Large room for improvements in precision, redundancy, new entries

Riccardo Barbieri

An example of redundancy

(Ligeti 2004)

Dominant process	final state	SM upper limit on $ \sin 2\beta_{\text{eff}} - \sin 2\beta $	$\sin 2\beta_{\rm eff}$	C_f
$b \rightarrow c \bar{c} s$	ψK_{S}	< 0.01	$+0.726 \pm 0.037$	$+0.031 \pm 0.029$
$b \rightarrow c \bar{c} d$	$\psi\pi^0$	~ 0.2	$+0.40\pm0.33$	$+0.12\pm0.24$
	$D^{*+}D^{*-}$	~ 0.2	$+0.20\pm0.32$	$+0.28\pm0.17$
$b \rightarrow s \bar{q} q$	ϕK^0	~ 0.05	$+0.34\pm0.20$	-0.04 ± 0.17
	$\eta' K_S$	~ 0.1	$+0.41\pm0.11$	-0.04 ± 0.08
	$K^+K^-K_S$	~ 0.15	$+0.53\pm0.17$	$+0.09\pm0.10$
	$\pi^0 K_S$	~ 0.15	$+0.34\pm0.28$	$+0.09\pm0.14$
	$f_0 K_S$	~ 0.15	$+0.39\pm0.26$	$+0.14\pm0.22$
	ωK_S	~ 0.15	$+0.75\pm0.66$	-0.26 ± 0.50

CP-asymmetries $\sin 2\beta_{eff}$ for which the SM predicts $\sin 2\beta$, all equal to each other, with some process-dependent uncertainty

CP violation

Useful to "integrate out" the heavy particles (t, W, Z) to obtain an \mathcal{L}^{eff} . Which operators can give rise to CP-violation? \Rightarrow In order of increasing dimensionality (= decreasing relevance): dim 5: quarks Electric Dipole Moments (!?) $\mu \bar{q}_L \sigma_{\mu\nu} q_R F^{\mu\nu} + m \bar{q}_L q_R$ with μ/m complex $\Rightarrow d_{neutron}(SM) \approx 10^{-31} e \cdot cm$ against $d_{neutron}(exp) \le 6 \cdot 10^{-26} e \cdot cm \approx 10^{-11} \frac{e}{2m_N}$ $[d_e(SM) \approx 0 \text{ against}]$ $d_e(exp) = (0.07 \pm 0.07) 10^{-26} e \cdot cm \approx 10^{-16} \mu_B$ + neglecting $\theta G^a_{\mu\nu}G^a_{\rho\sigma}\varepsilon^{\mu\nu\rho\sigma}$ since θ is a parameter which may be set to 0, maybe by a dynamical mechanism (the axion?) Riccardo Barbieri ElectroWeak Interactions: Theory 2004 11

CP violation (continued)

dim 6: FCNC $(\bar{q}q)(\bar{q}q)$ interactions (!?) now clearly seen in:

ϵ_K	$\Rightarrow \Delta S = 2/\Delta S = 1$
\mathfrak{e}'_K	$\Rightarrow \Delta S = 1$
$A_{CP}(B_d \to \Psi K_S)$	$\Rightarrow \Delta B = 2/\Delta B = 1$
$A_{CP}(B_d \to \pi^+ K^-)$	$\Rightarrow \Delta B = 1$

Examples	of theo	retically	clean	asymm	etries
L		J		J	

Measurement (in SM)	Theoretical limit	Present error
$B \to \psi K_S \ (\beta)$	$\sim 0.2^{\circ}$	1.6°
$B \to \phi K_S, \ \eta^{(\prime)} K_S, \ \dots \ (\beta)$	$\sim 2^{\circ}$	$\sim 10^{\circ}$
$B \to \pi \pi, \ \rho \rho, \ \rho \pi \ (\alpha)$	$\sim 1^{\circ}$	$\sim 15^{\circ}$
$B \to DK \ (\gamma)$	$\ll 1^{\circ}$	$\sim 25^{\circ}$
$B_{s} \to \psi \phi \ (\beta_{s})$	$\sim 0.2^{\circ}$	
$B_s \to D_s K \ (\gamma - 2\beta_s)$	$\ll 1^{\circ}$	
	(Ligeti 2004)

Riccardo Barbieri

The current comparison with data (2004)

type II
$$V_{ud}^* V_{us} + V_{cd}^* V_{cs} + V_{td}^* V_{ts} = 0$$

Riccardo Barbieri