Why Higgs?

Quantum field theory with massive exchange particles fails at high energies:

cross section: $\sigma \sim s^2$ violates unitarity at $\sqrt{s} \sim 1.3$ TeV

(if forces remain weak)

"if nothing happens, something must happen..."

The Standard Model Solution:

(rescue plan for the gauge principle) Introduction of a new scalar field with non-vanishing field strength in the vacuum: the Higgs field. Paradigm:

All (elementary) particles are massless

⇒ gauge principle works

⇒ renormalizable theory (finite cross sections)

permanent interaction with the Higgs field acts, as if the particles had a mass (effective mass)

Why Higgs?

How to add such a field in a gauge invariant way?

 $V(\phi)$

"Mexican hat-Potential"

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

most simple case: Φ =complex doublet of weak isospin (=SM)

but this is a pure guess many more possibilities, e.g.: 2 doublets (minimal SUSY), triplets,...

models with "true" and "effective" mass are not equivalent:

 ϕ_1

formulation with the help of Higgs mechanism:

• is gauge invariant

VIJ2

• postulates at least 1 scalar, massive Higgs boson

Why Higgs?

Theory:

Upper bound: perturbativity (λ <1) Lower bound: vacuum stability Models: minimal SUSY: m<135 GeV GUT's : m<180 GeV

Experiment:

Precision measurements (LEP,SLC,Tevatron) are sensitive to virtual corrections:

m<250 GeV (95% CL) within SM

The Higgs boson is probably "light"!

Higgs discovery at LHC

SM-like Higgs discovery with 30 fb-1 in one experiment guaranteed

Light Higgs most challening Fusion channels help a lot

Unusual decay modes (invisible, purely hadronic more complicated)

First measurements of Higgs properties possible:

- Mass: 0.1 0.4%
- Production rates: 10-20%
- Ratios of couplings: W/Z, W/t, W/t: 10-20%
- model-independent measurements of absolute couplings impossible

After the discovery of a Higgs boson, the key task of ILC is to establish the Higgs mechanism in all elements as being responsible for EW symmetry breaking

Precision Measurements must comprise:

- Mass
- Total Width
- Quantum numbers J^{PC} (Spin 0, CP-even?)
- Higgs-Fermion couplings (~ mass ?)
- Higgs-Gauge-Boson couplings (W/Z masses)
- Higgs self coupling (spontaneous symmetry breaking)

Measurements should be precise enough to distinguish between different models (e.g. SM/MSSM, effects from extra-dimensions, ...) Aim at model-independence!

K. Desch - Physics at a Linear Collider - CERN - November 2004

Production Processes

Fully simulated Higgs-strahlung event in TESLA detector ($Z \rightarrow ee, H \rightarrow bb$)

Model-independent observation

Anchor of LC Higgs physics:

 select di-lepton events consistent with Z→ee/µµ

• calculate recoil mass:

 $m_{\rm H}^{\rm 2}\,{=}\,(p_{\ell\ell}\,{-}\,p_{\rm initial}\,)^{\rm 2}$

model independent, decay-mode independent measurement!

efficiency is ~independent of decay mode:

works over the whole range of possible Higgs masses:

Is it a Higgs boson?

Rise of cross section near threshold is sensitive to Higgs Spin

for J=0: rise ~ β for J>0: rise ~ β^k , k>1 (some cases for J=2 are also ~ β but can be distinguished from J=0 through angular distributions)

also:

observation of $H \rightarrow \gamma \gamma$ or $\gamma \gamma \rightarrow H$ rule out J=1 and require C = +

K. Desch - Physics at a Linear Collider - CERN - November 2004

2. Higgs Physics Quantum Numbers Method B: CP from transverse polarization correlations in $H \rightarrow \tau \tau$ 160 π^0 140 120 100 π⁰ 80 $e^+e^- \rightarrow HZ \rightarrow \tau^+\tau^- X$ m_b=120 GeV, √s = 350 GeV, L=1ab⁻¹ 60 both $\tau\tau \rightarrow \rho\nu\rho\nu$ and $\tau\tau \rightarrow a_{1}\nu\rho\nu$ included 40 CP-even H⁰ CP-odd A⁰ 20 Simdet Needs exclusive reconstruction 0

 $\tau \rightarrow \rho v$ and $\tau \rightarrow a_1 v$ decay modes

First estimate with detector simulation: > 8σ separation between CP+ and CPfor 120 GeV Higgs (350GeV/1 ab⁻¹) 0.5

1.5

2.5 3 acoplanarity angle Φ

2. Higgs Physics Mass

Model-independent HZ analysis only uses a fraction of the events $(Z \rightarrow II)$

For a precise mass determination further statistics can be gained if hadronic Z-decays are used.

For mass measurement, explicit Higgs final states (e.g. H→bb) may be used

Highest sensitivity to Higgs mass comes from purely hadronic events

Kinematic fits improve the mass resolution

Mass

M_H	Channel	δM_H
GeV)		(MeV)
120	$\ell\ell q q$	± 70
120	qqbb	± 50
120	Combined	± 40
150	$\ell\ell$ Recoil	± 90
150	qqWW	± 130
150	Combined	± 70
180	$\ell\ell$ Recoil	± 100
180	qqWW	± 150
180	Combined	± 80

Branching Ratios

Higgs Branching ratios best to study Higgs Yukawa couplings for a light H Exception: top (later)

Crucial test: $\Gamma(H \rightarrow ff) \sim m_f$?

 $BR(H \to X) = \frac{\left[\sigma(HZ) \cdot BR(H \to X)\right]^{\text{meas}}}{\sigma(HZ)^{\text{meas}}}$

to obtain b- and c-likeness for each jet

Branching Ratios

BR analysis performed for all HZ events, categorized acc. to Z decay

Classify according to #leptons and visible energy

Branching Ratios

Then for each Z-channel fit the b- and c-likeness distributions

Branching Ratios

Rare decays: H→µµ

2. Higgs Physics Branching Ratios

Rare decays: H→bb at m_H>160 GeV

hard to get any direct Yukawa coupling information if $200 < m_H < 350$ GeV! How far can one go with H→bb? Use large rate of WW-fusion processes.

Branching Ratios

Summary on Branching ratios (state-of-the-art, expect improvements)

	Higgs Mass (GeV)			
	120	140	160	200
$\Delta B_{bb}/B_{bb}$	0.016	0.018	0.020	0.090
$\Delta B_{WW}/B_{WW}$	0.020	0.018	0.010	0.025
$\Delta B_{gg}/B_{gg}$	0.023	0.035	0.146	
$\Delta B_{\gamma\gamma}/B_{\gamma\gamma}$	0.054	0.062	0.237	
$\Delta B_{\tau\tau}/B_{\tau\tau}$	0.050	0.080		
$\Delta B_{cc}/B_{cc}$	0.083	0.190		

K. Desch - Physics at a Linear Collider - CERN - November 2004

Higgs at Photon Collider

Photon Collider: unique place to study Higgs $\gamma\gamma$ partial width in s-channel $\gamma\gamma \rightarrow H$ production

$$\begin{aligned} \sigma(\gamma\gamma \to \mathbf{H} \to \mathbf{X}) &= \frac{4\pi^2}{\mathbf{m}_{\mathbf{H}}^3} \Gamma(\mathbf{H} \to \gamma\gamma) \cdot \mathrm{BR}(\mathbf{H} \to \mathbf{X}) (1 + \lambda_1 \lambda_2) \\ (\lambda_i = \text{helicity of photon } i) \end{aligned}$$

Sensitive to any massive charged particle in the loop \rightarrow universal NP probe Combination with Higgs-BR's from e⁺e⁻ can give total Higgs width (later) Assume Higgs mass known \rightarrow tune $\sqrt{s_{yy}}$ to peak position

K. Desch - Physics at a Linear Collider - CERN - November 2004

2. Higgs Physics Total Width

2. Higgs Physics Tota

Total Width

If m_H is above WW threshold, width can be reconstructed from lineshape

K. Desch - Physics at a Linear Collider - CERN - November 2004

2. Higgs Physics Top Yukawa Coupling

Top quark Yukawa coupling:

- need highest energy
- heaviest quark → surprises?
- small cross section
- complicated final state

- analysis in bb and WW decay
- huge and complicated backgrounds (ttWW is a 10-fermion final state)
- b-tagging crucial to suppress bkg. and reduce combinatorial bkg.

K. Desch - Physics at a Linear Collider - CERN - November 2004

K. Desch - Physics at a Linear Collider - CERN - November 2004

K. Desch - Physics at a Linear Collider - CERN - November 2004

More sensitivity at higher energy? Two competing effects:

Larger dilution due to non-HHH diagrams

But large number of events due to contribution from WW-fusion:

2. Higgs Physics Invisible Higgs

Many SM extensions predict invisible Higgs decays, e.g.:

- MSSM $H \rightarrow \chi^0_1 \chi^0_1$
- Extra Dimensions
- Model with new singlets (NMSSM, Majoron Models)
- Stealthy Higgs

Estimate sensitivity from 1 = BR(vis) + BR(invis)

or explicit reconstruction in

Assumptions:

 $\sqrt{s} = 350 \, GeV, L = 500 \, fb^{-1}$ $m_H = 120, 140, 160 \, GeV$

K. Desch - Physics at a Linear Collider - CERN - November 2004

SM Higgs - Global Fits

Interpretation of branchning ratio and cross section measurements in global fits (HFITTER)

Coupling	$M_H = 120 \mathrm{GeV}$	$140\mathrm{GeV}$
g_{HWW}	± 0.012	± 0.020
g_{HZZ}	± 0.012	± 0.013
g_{Htt}	± 0.030	± 0.061
g_{Hbb}	± 0.022	± 0.022
g_{Hcc}	± 0.037	± 0.102
$g_{H\tau\tau}$	± 0.033	± 0.048
g_{HWW}/g_{HZZ}	± 0.017	± 0.024
g_{Htt}/g_{HWW}	± 0.029	± 0.052
g_{Hbb}/g_{HWW}	± 0.012	± 0.022
$g_{H\tau\tau}/g_{HWW}$	± 0.033	± 0.041
g_{Htt}/g_{Hbb}	± 0.026	± 0.057
g_{Hcc}/g_{Hbb}	± 0.041	± 0.100
$g_{H au au}/g_{Hbb}$	± 0.027	± 0.042

%-level accuracy – sensitivity beyond SM

In MSSM two complex Higgs doublet fields needed

(cancellation of triangale anomalies)

Minimal possibility: two doublets (weak isospin ±1)

→ 5 physical Higgs bosons:

h,H	neutral, CP-even
А	neutral, CP-odd
H±	charged

Masses at tree-level predicted as function of m_A and $tan\beta$ but large rad. corrections (top, stop)

m_h < 135 GeV

SUSY Higgs at LHC

To prove the structure of the Higgs sector, the heavier Higgs bosons have to be observed either directly or through loop-effects. Direct observation difficult in part of parameter space at LHC

SUSY Higgs Production at ILC

Most challenging: 'decoupling limit' $sin^2(\beta-\alpha) \rightarrow 1$, m_A large h becomes SM like H/A/H[±] heavy and mass degenerate

SUSY Higgs Bosons

 $H/A \rightarrow bb\tau\tau$ more difficult due to low BR($H/A \rightarrow \tau\tau$) but allows for distinction of H and A and reconstruction of decay width to o(1 GeV)

Advantage of photon collider: single production Mass reach in principle up to $\sqrt{s_{\gamma\gamma}} = 0.8 \sqrt{s_{ee}}$ but very high luminosity required + need to have an estimate of m to use peaking photon spectrum

- Higgs mechanism (still) the only completely calculable model of electro-weak symmetry breaking
- Intriguing hints for light Higgs boson from experiment + theory
- LHC will find a SM-like Higgs if it's there
- ILC will be able to pin down the properties of the light Higgs at the quantum level and test details of the model
- Heavy SUSY Higgses can be seen if m< $\sqrt{s_{ee}}/2$ or m< $\sqrt{s_{\gamma\gamma}}$
- CLIC: improve on very rare decays + (maybe) self-coupling larger mass reach for heavy SUSY Higgses in decoupling limit