4. Extra Dimensions | "Large" Extra Dimensions

- Completely alternative approach to solve the hierarchy problem: 'There is no hierarchy problem'
- Suppose, the SM fields live in 'normal' 3+1D space
- Gravity lives in 4 + δ Dimensions
- δ extra Dimensions are curled to a small volume (radius R):

4. Extra Dimensions | "Large" Extra Dimensions

For r $<$ R, gravity follows Newtons law in 4+ δ dimensions:

 $V(r) = \frac{r}{r}$

 $(r) = \frac{-s}{\delta + 1}$

=

For
$$
r > R
$$
, gravity follows effectively Newton's law in 4 dimensions, since the 'distance' in the extra dimensions does not rise anymore:

r $\delta+$

 $G_{\!\scriptscriptstyle S}$

$$
V(r) = \frac{G_S}{R^{\delta} r} = \frac{G_N}{r} \text{ with } G_N = \frac{G_S}{R^{\delta}}
$$

The Planck-Mass $\boldsymbol{M}_{Planck}^2 = \hbar c \, / \, \boldsymbol{G_{_N}}$ only effectively appears so high at large distances. The true scale of gravity is

$$
M_S^2 = \hbar c / G_S = \hbar c R^{\delta} / G_N
$$

If e.g. R ~ o(100 μm) and δ=2 one obtains $\,\,M_{_S}=o(1\,\rm TeV)$! =

→ Gravity might become visible in TeV-scale colliders!

K. Desch - Physics at a Linear Collider - CERN - November 2004

4. Extra Dimensions | "Warped" Extra Dimensions

gravity appears weak on SM brane (in our world) due to exponentially 'warped' metric in 5th dimension

$$
ds^2 = e^{-2kr_c|\phi|} \eta_{\mu\nu} dx^\mu dx^\nu - r_c^2 d\phi^2
$$

K. Desch - Physics at a Linear Collider - CERN - November 2004

Discovery through precision

Precision measurements of SM processes are a telescope to higher scale physics

Plan:

- 1. top quark
- 2. 2f production: contact interactions
- 3. 2f production: Z' and similar heavy vector resoncances
- 4. 4f production: anomalous TGC's
- 5. Alternative EWSB:
	- effective Lagrangian
	- TGCs reinterpreted
	- Quartic gauge couplings
- 6. Giga-Z / Mega-W

Top is the heaviest fermion \rightarrow want to its mass as precise as possible

Why?

- Crucial input parameters to any future theory of flavour
- Already today the largest uncertainty in the calculation of many SM observables. With improved precision on m $_{\textrm{\tiny{W}}}$ (∆m $_{\textrm{\tiny{W}}}$ =6 MeV, later) even more important
- In any model where m_n can be calculated (e.g. SUSY), always large large contribution from m_t. In MSSM typically shift of 1 GeV in m_t means shift of 1 GeV in m_h. If ∆m_h= 50 MeV, ∆m_t will be limiting again.

5. Top quark

Experimental precision ~40 MeV

Precision limited by theoretical uncertainty from huge QCD corrections at threshold:

 Δ m(top) ~ 50-100 MeV

 $\Delta\Gamma({\text{top}})/\Gamma({\text{top}})\sim 3$ -5%

simultaneously fit

 $\Delta \alpha_{\sf s} \thicksim \bm{0.0025}$

5. Top quark

Further possibilities by studying top decays in continuum:

e.g. top-Coupling to Z (hard at LHC due to strong production)

6. Two-fermion

```
The process \mathrm{e}^+\mathrm{e}^-\!\rightarrow\!\mathrm{f}\mathrm{f} \; \mathrm{f}=\mathrm{e}, \!\mu, \tau, \mathrm{uds}, \!\mathrm{c}, \mathrm{b}
```
can be predicted within the SM to high precision. Any deviation is a definitive sign of new physics

Precision allow for tests at the loop level \rightarrow sensitivity far beyond cms energy!

Large variety of observables ($\sigma_{\rm tot}$, A_{FB}, A_{LR}) + flavour dependence allows to find out details about the new physics contribution

Interpretation in models of:

- contact interactions
- new gauge bosons (Z')
- large extra dimensions

6. Two-fermion | New Gauge Bosons (Z')

New U(1) gauge bosons (Z') often appear when in models of step-by-step symmetry breaking of GUT groups, e.g. E(6), LR-symmetric models Some of the subgroups may stay intact down to the TeV scale

Unlikely for LC to directly produce a Z' (Tevatron limits approaching 1 TeV) LHC reach typically ~3-5 TeV for SM-like couplings

LC can discover a Z' by measuring its interference with Z, γ exchange (PETRA could measure Z properties without producing Z's)

6. Two-fermion | New Gauge Bosons (Z')

If Z' mass is known (e.g. from LHC) ILC can measure the vector and axial-vector couplings an pin down the nature of the Z'

By measuring at two different $\sqrt{\mathbf{s}}$, ILC can measure both mass and couplings

K. Desch - Physics at a Linear Collider - CERN - November 2004

In extended models, deviations occur typically at loop level, i.e. suppressed by g/16 $\pi^2 \approx 3$ 10⁻³

MSSM contribution to $\Delta\kappa_{_\gamma}$:

7. Four-fermion | Triple Gauge Boson Couplings

Results (in units 10-4):

(f) 800 GeV, e^+e^- polarisation (RL+LR)

With polarisation, simultaneous 5-parameter fits can be done without huge degardation of precision

Systematic errors ~ statistical errors if ISR known to 1% and beamstrahlung to ~10% - other syst. errors smaller

Comparison to other colliders:

Figure 7.9: Comparison of $\Delta \kappa_{\gamma}$ and $\Delta \lambda$ at different machines. For LHC and TESLA three years of running are assumed (LHC: 300 fb⁻¹, TESLA \sqrt{s} = 500 GeV: 900 fb⁻¹, TESLA \sqrt{s} = 800 GeV: 1500 fb⁻¹).

Strong EWSB

 \rightarrow divergent W $_{\rm L}$ W $_{\rm L}$ \rightarrow W $_{\rm L}$ W $_{\rm L}$ amplitude L L L L

 \rightarrow new strong QCD-like interaction at $\Lambda^2 \sim o(\frac{4\pi\sqrt{2}}{2}) = (1.2 \text{ TeV})^2$ $\mathrm{o}(\frac{4\pi\sqrt{2}}{\mathrm{G}_{\mathrm{F}}})$ = (1.2TeV) π $\Lambda^2 \sim o(\frac{1+\cdots-1}{n}) =$

- \rightarrow Goldstone bosons ("Pions") = W_L states ("technicolor")
- \rightarrow no calculable theory until today in agreement with precision data

Experimental consequences: deviations in triple and quartic gauge

Strong EWSB

- \bullet Theoretical approach: assume only that SU(2) $_{\textrm{\tiny{L}}}$ x U(1) $_{\textrm{\tiny{Y}}}$ is broken spontaneously down to U(1) $_{\rm Q}$
- Effective Lagrangian contains 10 dim-4 Operators
- \bullet 5 obey SU(2)_c, i.e. they protect ρ ~ 1.

$$
L_1 = \frac{\alpha_1}{16\pi^2} \frac{gg'}{2} B_{\mu\nu} \text{tr}\left(\sigma_3 W^{\mu\nu}\right)
$$

\n
$$
L_2 = \frac{\alpha_2}{16\pi^2} i g' B_{\mu\nu} \text{tr}\left(\sigma_3 V^{\mu} V^{\nu}\right)
$$

\n
$$
L_3 = \frac{\alpha_3}{16\pi^2} 2 i g \text{tr}\left(W_{\mu\nu} V^{\mu} V^{\nu}\right)
$$

\n
$$
L_4 = \frac{\alpha_4}{16\pi^2} \text{tr}\left(V_{\mu} V_{\nu}\right) \text{tr}\left(V^{\mu} V^{\nu}\right)
$$

\n
$$
L_5 = \frac{\alpha_5}{16\pi^2} \text{tr}\left(V_{\mu} V^{\mu}\right) \text{tr}\left(V_{\nu} V^{\nu}\right)
$$

L₁, L₂, L₃ can be probed in W pair production (reinterpretation of anomaluous TGC couplings)

 $\mathsf{L}_4,\mathsf{L}_5$ probed in <u>VV→VV scattering</u>

couplings α_{I} relate to scale of new physics 2 $\frac{1}{16\pi^2}$ = $\left(\frac{1}{\Lambda_i^*}\right)$ $\overline{}$ \int $\bigg)$ \setminus $\bigg($ Λ= *ii ^v* π α

 $\overline{}$

Strong EWSB | Triple Gauge Couplings

Sensitivity to new physics scale Λ:

Strong EWSB | Quartic Gauge Couplings

Strong EWSB | Observation of heavy resonances at CLIC

heavy resaonance in WW,WZ,ZZ channels at ~2 TeV

with detector simulation + backgrounds

at $\sqrt{\mathsf{s}}$ = 3 TeV, 1.6 ab⁻¹

