4. Extra Dimensions "Large" Extra Dimensions

- Completely alternative approach to solve the hierarchy problem: 'There is no hierarchy problem'
- Suppose, the SM fields live in `normal' 3+1D space
- Gravity lives in 4 + δ Dimensions
- δ extra Dimensions are curled to a small volume (radius R):

4. Extra Dimensions "Large" Extra Dimensions

For r < R, gravity follows Newtons law in $4+\delta$ dimensions:

 $V(r) = \frac{G_S}{S^{+1}}$

$$V(r) = \frac{G_S}{R^{\delta}r} = \frac{G_N}{r} \text{ with } G_N = \frac{G_S}{R^{\delta}}$$

The Planck-Mass $M_{Planck}^2 = \hbar c / G_N$ only effectively appears so high at large distances. The true scale of gravity is

$$M_S^2 = \hbar c / G_S = \hbar c R^{\delta} / G_N$$

If e.g. R ~ o(100 μ m) and δ =2 one obtains $M_s = o(1 \text{ TeV})$!

⇒ Gravity might become visible in TeV-scale colliders!

K. Desch - Physics at a Linear Collider - CERN - November 2004

4. Extra Dimensions "Warped" Extra Dimensions

gravity appears weak on SM brane (in our world) due to exponentially 'warped' metric in 5th dimension

$$ds^{2} = e^{-2kr_{c}|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - r_{c}^{2}d\phi^{2}$$

Discovery through precision

Precision measurements of SM processes are a telescope to higher scale physics

Plan:

- 1. top quark
- 2. 2f production: contact interactions
- 3. 2f production: Z' and similar heavy vector resoncances
- 4. 4f production: anomalous TGC's
- 5. Alternative EWSB:
 - effective Lagrangian
 - TGCs reinterpreted
 - Quartic gauge couplings
- 6. Giga-Z / Mega-W

Top is the heaviest fermion \rightarrow want to its mass as precise as possible

Why?

- Crucial input parameters to any future theory of flavour
- Already today the largest uncertainty in the calculation of many SM observables. With improved precision on $m_W (\Delta m_W = 6 \text{ MeV}, \text{ later})$ even more important
- In any model where m_h can be calculated (e.g. SUSY), always large large contribution from m_t . In MSSM typically shift of 1 GeV in m_t means shift of 1 GeV in m_h . If Δm_h = 50 MeV, Δm_t will be limiting again.

5. Top quark

Experimental precision ~40 MeV

Precision limited by theoretical uncertainty from huge QCD corrections at threshold:

 $\Delta m(top) \sim 50-100 \text{ MeV}$

ΔΓ(top)/Γ(top) ~ 3-5%

simultaneously fit

 $\Delta \alpha_{s} \sim 0.0025$

5. Top quark

Further possibilities by studying top decays in continuum:

e.g. top-Coupling to Z (hard at LHC due to strong production)

6. Two-fermion

```
The process e^+e^- \rightarrow f\bar{f} f = e, \mu, \tau, uds, c, b
```

can be predicted within the SM to high precision. Any deviation is a definitive sign of new physics

Precision allow for tests at the loop level \rightarrow sensitivity far beyond cms energy!

Large variety of observables (σ_{tot} , A_{FB} , A_{LR}) + flavour dependence allows to find out details about the new physics contribution

Interpretation in models of:

- contact interactions
- new gauge bosons (Z')
- large extra dimensions

6. Two-fer	6. Two-fermion Contact Interaction		าร						
$\frac{\text{Observables at the LC:}}{\sigma_{tot}}$ $A_{FB} = \frac{3}{4}\sigma_{FB}/\sigma_{tot}$					Scaling law for stat. errors: $\Lambda pprox M_X/g \propto (s \cdot L_{int})^{1/4}$				
A_{LR}	$A_{LR} = \frac{\sigma_{LR}}{\sigma_{tot}}$ $A_{LR}^{FB} = \frac{3}{4} \sigma_{LR}^{FB} / \sigma_{tot}$			LC sensitivities 50 – 100 TeV + different channels than LHC + flavour dependent sensitivity					
		LHC Λ [TeV]						0 fb ⁻¹ 500 GeV	
mod	lel	LL	RR	LR	RL	LL	RR	LR	RL
eeqq:	Λ_+	20.1	20.2	22.1	21.8	64	24	92	22
	Λ_{-}	33.8	33.7	29.2	29.7	63	35	92	24
ee $\mu\mu$:	Λ_+					90	88	72	72
	Λ_{-}					90	88	72	72
eeee:	Λ_+					44.9	43.4	52.4	52.4
	Λ_{-}					43.5	42.1	50.7	50.7

6. Two-fermion

New Gauge Bosons (Z')

New U(1) gauge bosons (Z') often appear when in models of step-by-step symmetry breaking of GUT groups, e.g. E(6), LR-symmetric models Some of the subgroups may stay intact down to the TeV scale

Unlikely for LC to directly produce a Z' (Tevatron limits approaching 1 TeV) LHC reach typically ~3-5 TeV for SM-like couplings

LC can discover a Z' by measuring its interference with Z,γ exchange (PETRA could measure Z properties without producing Z's)

6. Two-fermion

New Gauge Bosons (Z')

If Z' mass is known (e.g. from LHC) ILC can measure the vector and axial-vector couplings an pin down the nature of the Z'

By measuring at two different \sqrt{s} , ILC can measure both mass and couplings

K. Desch - Physics at a Linear Collider - CERN - November 2004

7. Four-fermion

In extended models, deviations occur typically at loop level, i.e. suppressed by $g/16\pi^2 \approx 3 \ 10^{-3}$

MSSM contribution to $\Delta \kappa_{\gamma}$:

K. Desch - Physics at a Linear Collider - CERN - November 2004

7. Four-fermion

Results (in units 10⁻⁴):

	1d	5d	Δg_1^{Z}	$\Delta \kappa_{\gamma}$	λ_γ	$\Delta \kappa_{\rm Z}$	λ_Z
$\Delta g_1^{\rm Z}$	12.6	15.9	1.000	-0.109	0.235	-0.432	-0.449
$\Delta \kappa_{\gamma}$	1.9	2.1		1.000	-0.020	-0.237	-0.021
λ_{γ}	3.3	3.3			1.000	-0.173	0.059
$\Delta \kappa_{\rm Z}$	2.0	2.1				1.000	0.187
λ_Z	3.0	3.3					1.000

(f) $800 \,\text{GeV}, \,e^+e^-$ polarisation (RL+LR)

With polarisation, simultaneous 5-parameter fits can be done without huge degardation of precision

Systematic errors ~ statistical errors if ISR known to 1% and beamstrahlung to ~10% - other syst. errors smaller

7. Four-fermion

Comparison to other colliders:

Figure 7.9: Comparison of $\Delta \kappa_{\gamma}$ and $\Delta \lambda$ at different machines. For LHC and TESLA three years of running are assumed (LHC: 300 fb⁻¹, TESLA $\sqrt{s} = 500 \text{ GeV}$: 900 fb⁻¹, TESLA $\sqrt{s} = 800 \text{ GeV}$: 1500 fb⁻¹).

 \rightarrow divergent $W_L W_L \rightarrow W_L W_L$ amplitude

→ new strong QCD-like interaction at $\Lambda^2 \sim O(\frac{4\pi\sqrt{2}}{G_{E}}) = (1.2 \text{ TeV})^2$

- \rightarrow Goldstone bosons ("Pions") = W_L states ("technicolor")
- \rightarrow no calculable theory until today in agreement with precision data

Experimental consequences: deviations in triple and quartic gauge

- Theoretical approach: assume only that $SU(2)_L \ x \ U(1)_Y$ is broken spontaneously down to $U(1)_Q$
- Effective Lagrangian contains 10 dim-4 Operators
- 5 obey SU(2)_C, i.e. they protect $\rho \sim 1$.

$$L_{1} = \frac{\alpha_{1}}{16\pi^{2}} \frac{gg'}{2} B_{\mu\nu} \operatorname{tr} \left(\sigma_{3} W^{\mu\nu} \right)$$
$$L_{2} = \frac{\alpha_{2}}{16\pi^{2}} \operatorname{i} g' B_{\mu\nu} \operatorname{tr} \left(\sigma_{3} V^{\mu} V^{\nu} \right)$$
$$L_{3} = \frac{\alpha_{3}}{16\pi^{2}} 2\operatorname{i} g \operatorname{tr} \left(W_{\mu\nu} V^{\mu} V^{\nu} \right)$$
$$L_{4} = \frac{\alpha_{4}}{16\pi^{2}} \operatorname{tr} \left(V_{\mu} V_{\nu} \right) \operatorname{tr} \left(V^{\mu} V^{\nu} \right)$$
$$L_{5} = \frac{\alpha_{5}}{16\pi^{2}} \operatorname{tr} \left(V_{\mu} V^{\mu} \right) \operatorname{tr} \left(V_{\nu} V^{\nu} \right)$$

L₁, L₂, L₃ can be probed in <u>W pair production</u> (reinterpretation of anomaluous TGC couplings)

 L_4, L_5 probed in <u>VV \rightarrow VV scattering</u>

couplings α_1 relate to scale of new physics $\frac{\alpha_i}{16\pi^2} = \left(\frac{v}{\Lambda_1^*}\right)^2$

,

Triple Gauge Couplings

Sensitivity to new physics scale Λ :

$lpha_1=0$	80%+0%	80%+60%
Λ_2^*	5.4 TeV	8.8 TeV
Λ_3^*	8.2 TeV	10.7 TeV

Quartic Gauge Couplings

Observation of heavy resonances at CLIC

heavy resaonance in WW,WZ,ZZ channels at ~2 TeV

with detector simulation + backgrounds

at $\sqrt{s} = 3 \text{ TeV}$, 1.6 ab⁻¹

	Summary of day 4				
	asurements of SM processes at the LC complement tudy directly produced new particles				
•	s measurement with <100 MeV error will be a crucial r any precise prediction of SM + BSM observables				
deep into mu	 The energy reach of ILC through precision measurements goes deep into multi-TeV region (C.I. 50-100 TeV, Z' 10 TeV, SEWSB 3-10 TeV) 				
	I to new discoveries, complement LHC results and nning for multi-TeV colliders				