Electromagnetic Calorimeter WG Introduction

ECAL @ SLHC

- Goals: Review expectations for ECAL at SLHC Joint sessions w/ HCAL on off detector hardware (Phase1/2) Detector/front-end specific issues (Phase 2) Discussions!
 - Define needs to flesh out ideas (eg. simulation tools)
 - Layout highest priority short term projects.

Discussions will cover two general areas:

Phase 1: off-detector* (Joint session with HCAL at 16:10 Today)

Phase 2: on-detector (Thursday Morning-Afternoon)

*slight weight towards off-detector in this talk, but many on-detector issues at this workshop

ECAL Occupancy

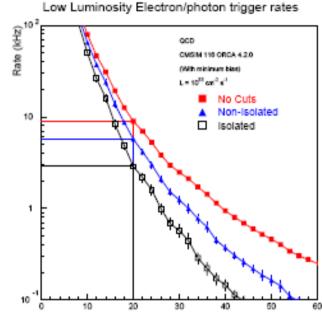
J. Varela

```
p-p minimum bias collisions at sqrt(s)=14 TeV:
~ 5 \pi^0 per rapidity unit
<P_T> ~500 MeV
```

SLHC up to 400 p-p collisions per crossing crossing rate 20 MHz

Per Trigger Tower ($\Delta\eta$. $\Delta\phi \sim 0.1 \times 0.1$), per crossing : ~ 12 γ (γ rate in ECAL ~2.4 MHz/cm²) <P_T> ~3 GeV

No empty ECAL towers!


Trigger Rates

L1 e/γ trigger: QCD background rates

At LHC low luminosity (L=10³³cm⁻²s⁻¹)

 \sim 1 p-p collision per crossing

	Rates		Prob/collis ion	
GeV	No cuts (kHz)	H/E+isol (kHz)	No cuts (kHz)	H/E+isol (kHz)
ET>20	10	3	2.5 10-4	7.5 10-5
ET>30	3	0.5	7.5 10-5	1.3 10-5
ET>50	0.5	0.06	1.3 10-5	1.5 10-6

Trigger Et Cutoff (GeV)

At SLHC (L=10³⁵cm⁻²s⁻¹), assuming prob/collision x 400 (cuts are probably less efficient)

 \rightarrow

	Rates	
GeV	No cuts (kHz)	H/E+isol (kHz)
ET>20	2000	600
ET>30	600	100
ET>50	100	12

Electron & Photon Measurement

J. Varela

Moliere radius ~ crystal size

~ 100% of shower energy is contained in 3x3 crystal window (when no electron radiation or photon conversion)

Average pile-up energy in 3x3 window: $\sim 2 \pi^0 \rightarrow \langle E_T \rangle \sim 1 \text{ GeV}$; $\sigma(E_T) \sim \langle E_T \rangle \sim 1 \text{ GeV}$

For non-converted photons of E_{τ} =50 GeV:

σ (pile-up) ~ 2% σ (ECAL) < 1%

Energy resolution is dominated by pile-up.

Preshower could allow to identify individual pile-up photons

Is the tracker material at SLHC an issue?

worse at trigger tower granularity

can ultimately gain at trigger by increasing granularity, but difficult to implement...

ECAL Data Volume

J. Varela

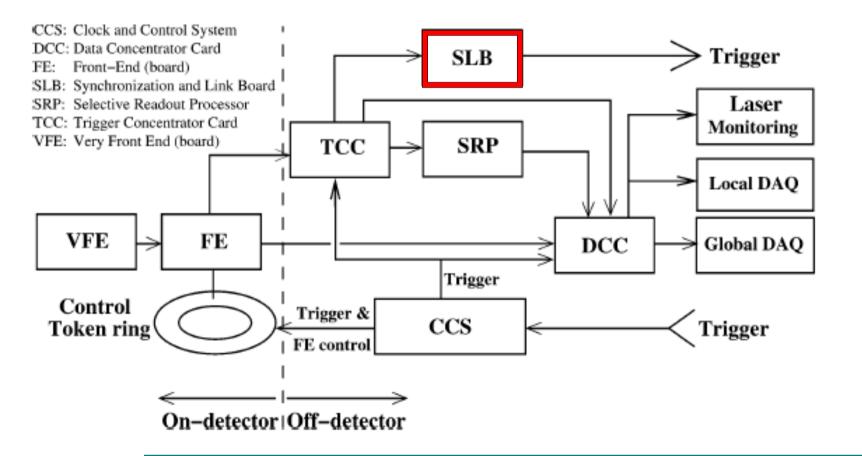
At LHC:

Total event size per DCC (FED): After data reduction in DCC: 40 kBytes 2 kBytes

 \rightarrow average output bandwidth ~ 200 MB/s, for L1A=100 kHz

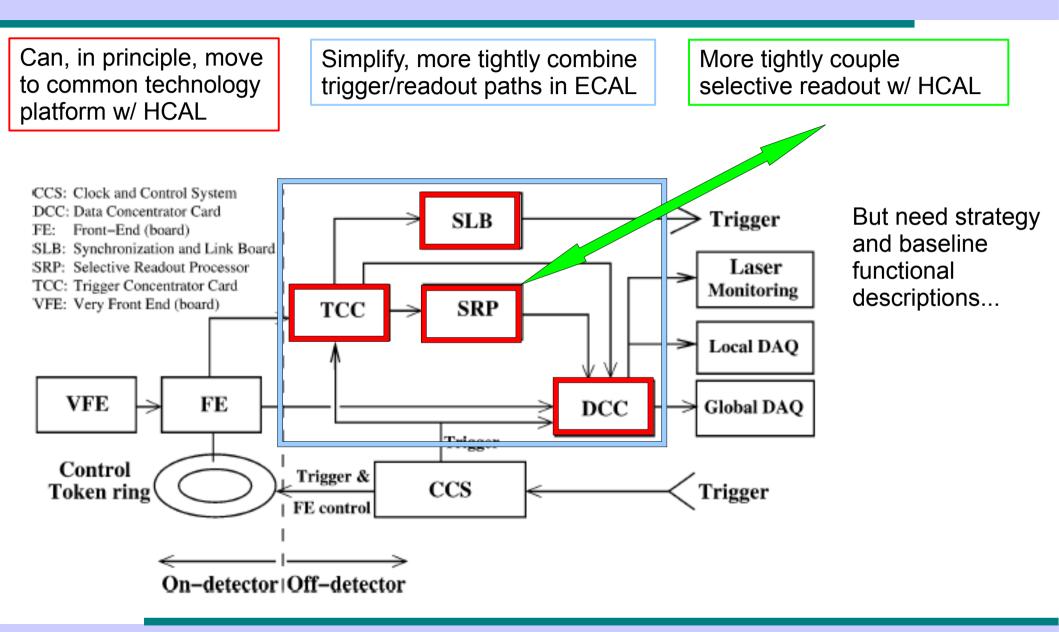
Data filtering: Selective readout + zero suppression SR: read trigger tower with E_{τ} >2-3 GeV + 8 surrounding towers (225 crystals)

At SLHC:


Increase the SR thresholds at the expense of physics or Increase the data bandwidth

We assume full event readout and L1A max=100 kHz → bandwidth 4 GBytes/s / DCC If trigger granularity is increased also helps to optimize SR.

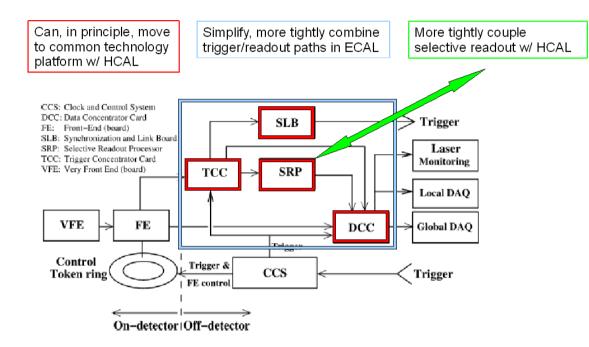
Not tenable for Phase 1, but can maybe Phase 2?


ECAL Readout and trigger paths

Minimal Phase 1 upgrade for compatibility w/ expected trigger hardware changes But no added functionality, no advance prep. for Phase 2. Can take advantage of HCAL/trigger R&D on (u)TCA to prepare for future...

CMS Upgrade Workshop, FNAL

ECAL Readout and trigger paths

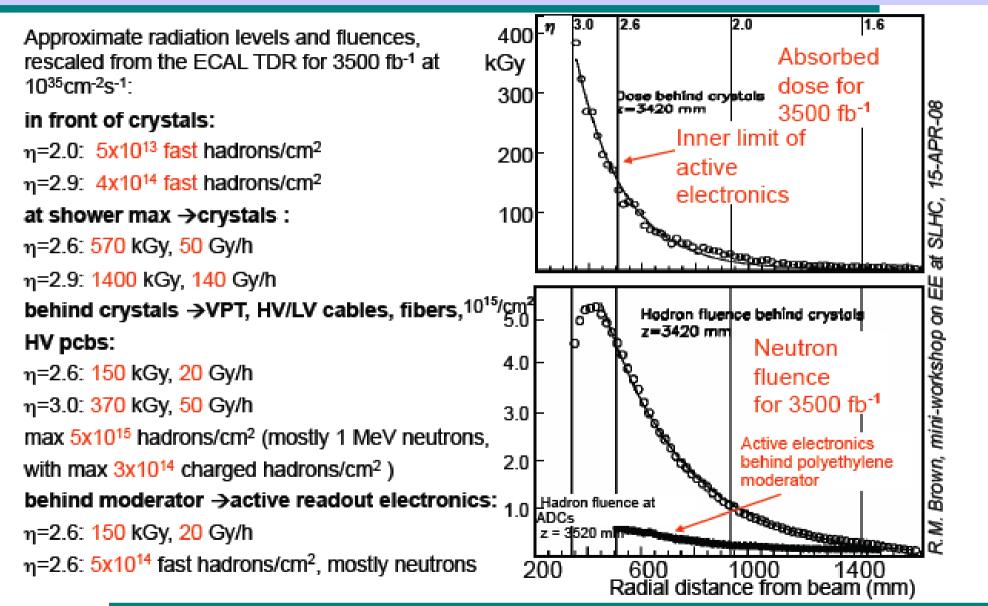

CMS Upgrade Workshop, FNAL

ECAL Readout and trigger paths

Phase 1 improvement to TPGs?

Should handle any scenario w/ finer granularity in Phase 2? Prospects for future data links?

Ideas for tighter coupling w/ HCAL? and Compatibility w/ cal/track matching scenarios? (latencies, interconnects, etc)

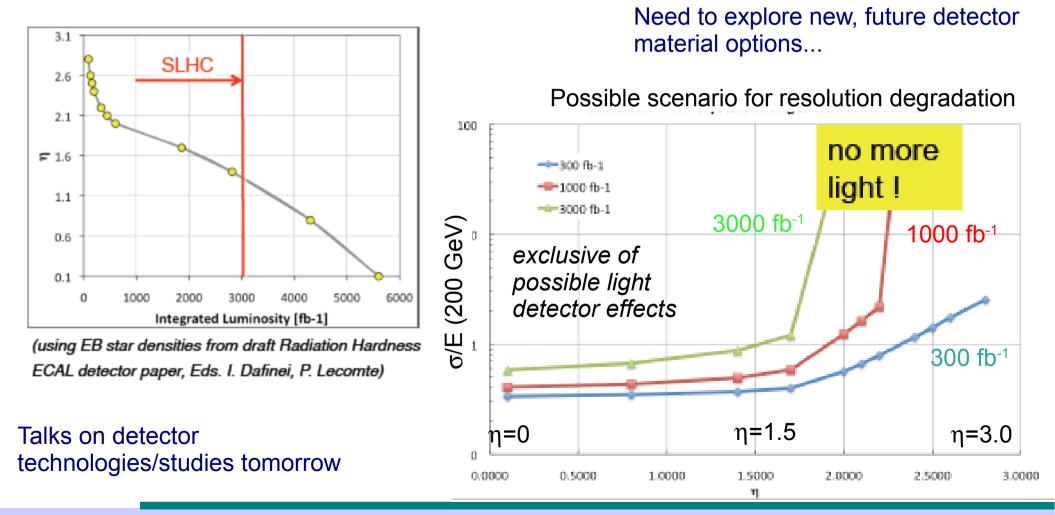


Installation/commissioning, backwards compatible initially in Phase 1?

Physics justifications, Physics justifications, Physics justifications

. . .

Radiation Levels



Nov 19, 2008

Evolution of light output loss w/ radiation

F. Nessi-Tedaldi

η value vs. $\int \mathcal{L}dt$, at which μ_{IND}(420 nm) = 2 m⁻¹ (~60% of Light Output loss) is expected to be reached in the ECAL

Nov 19, 2008

CMS Upgrade Workshop, FNAL

Constraints

Manpower and \$\$\$ (always!)

Time to build and install (~6 months install for Phase 1)

Detector access logistical issue for EB (removal of detector) health issue for EE (detector activation!)

Planning Thoughts

How should we reinterpret data from a precision ECAL in pile-up dominated environment?

Off-detector:

 keep close collaboration w/ HCAL, economy of scale in R&D and manufacturing

minimize redundant work, rebuilding hardware for each phase

On-detector:

how many technologies to explore (particle/light detection)

• if there is a future EE, what materials? geometry?

Many interesting issues ahead...