Self-Consistent Description of Exotic Structure and Decay near the N=Z Line in the A~70 Mass Region

A. PETROVICI

Institute for Physics and Nuclear Engineering, Bucharest, Romania Institut für Theoretische Physik, Universität Tübingen, Germany Exotic nuclei near the N = Z line in the A ~ 70 mass region manifest

- shape-coexistence and -mixing
- competition between proton-neutron and like-nucleon pairing correlations
- drastic changes in structure with particle number, angular momentum and excitation energy
- large isospin mixing effect on the *superallowed Fermi* β decay
- *relevant Gamow-Teller* β decay of low-lying excited states in waiting-point nuclei for the rp-process

Requirements for the self-consistent models

- realistic effective interactions in large model spaces
- beyond mean-field approaches

complex VAMPIR approaches

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being only restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation

Variational procedures

complex Vampir approach

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$

$$|\psi(F_1^s); sM\rangle = \frac{\hat{\Theta}_{M0}^s |F_1^s\rangle}{\sqrt{\langle F_1^s | \hat{\Theta}_{00}^s |F_1^s\rangle}}$$

complex Excited Vampir approach

$$\begin{split} |\psi(F_2^s); sM\rangle &= \hat{\Theta}_{M0}^s \left\{ |F_1^s\rangle \alpha_1^2 + |F_2^s\rangle \alpha_2^2 \right\} \\ |\psi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s \sum_{j=1}^i |F_j^s\rangle \alpha_j^i \quad \text{for} \quad i = 1, ..., n \\ |\Psi_{\alpha}^{(n)}; sM\rangle &= \sum_{i=1}^n |\psi_i; sM\rangle f_{i\alpha}^{(n)}, \quad \alpha = 1, ..., n \end{split}$$

$$(H - E^{(n)}N)f^n = 0$$

$$(f^{(n)})^+ N f^{(n)} = 1$$

A= 70 - 90 mass region 40 Ca - core model space (π, ν): $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 1d_{5/2} \ 0g_{9/2}$

(charge-symmetric basis + Coulomb contributions to the π -spe from the core)

renormalized G-matrix (OBEP, Bonn A) (Bonn CD)

- short range Gaussians in the nn, pp, np channels
- monopole shifts:

 $\begin{array}{l} \langle 0g_{9/2}0f;T=0|\hat{G}|0g_{9/2}0f;T=0\rangle\\ \\ \langle 1p1d_{5/2};T=0|\hat{G}|1p1d_{5/2};T=0\rangle \end{array}$

Superallowed Fermi β Decay

Superallowed Fermi β decay between 0⁺ T=1 analog states

test of the CVC hypothesis test of the unitarity of the CKM matrix

$$ft(1+\delta_R)(1-\delta_c) = \frac{K}{2G_v^2(1+\Delta_R^v)}$$

 δc – isospin-symmetry-breaking-correction

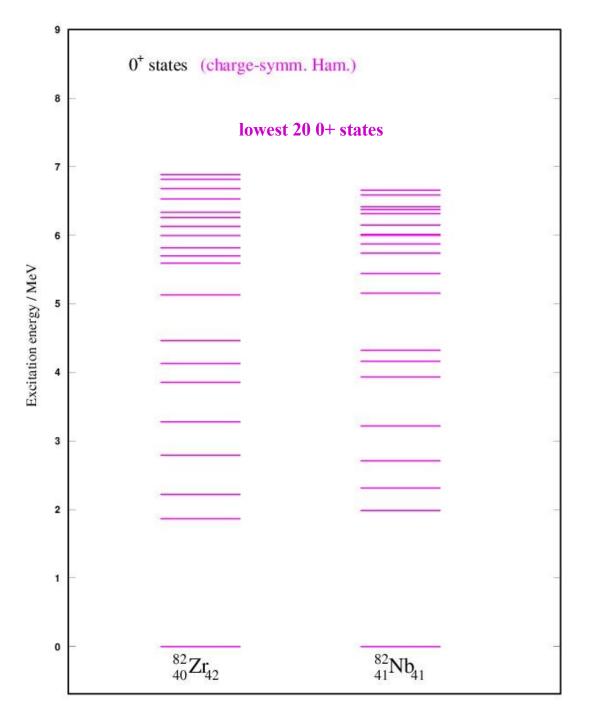
$$A=82 \quad {}_{41}\mathrm{Nb}_{41} \rightarrow {}_{40}\mathrm{Zr}_{42} \qquad 0^+ \rightarrow 0^+$$

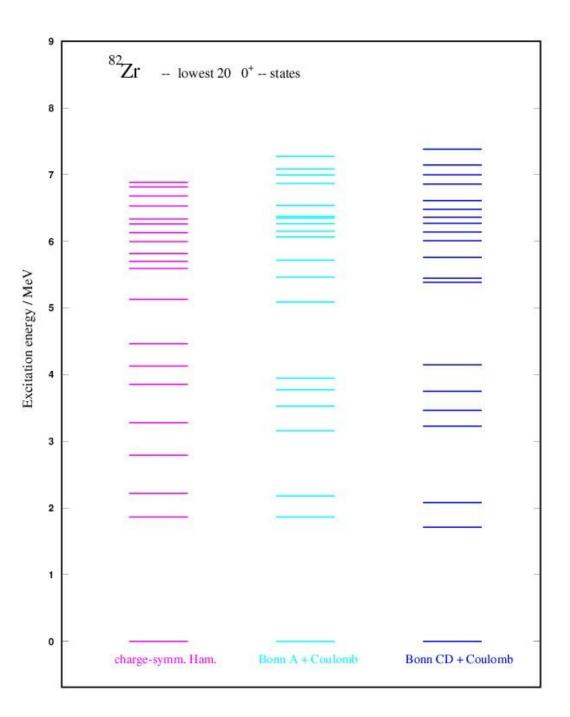
 $T_{1/2} = 52(6)$ ms

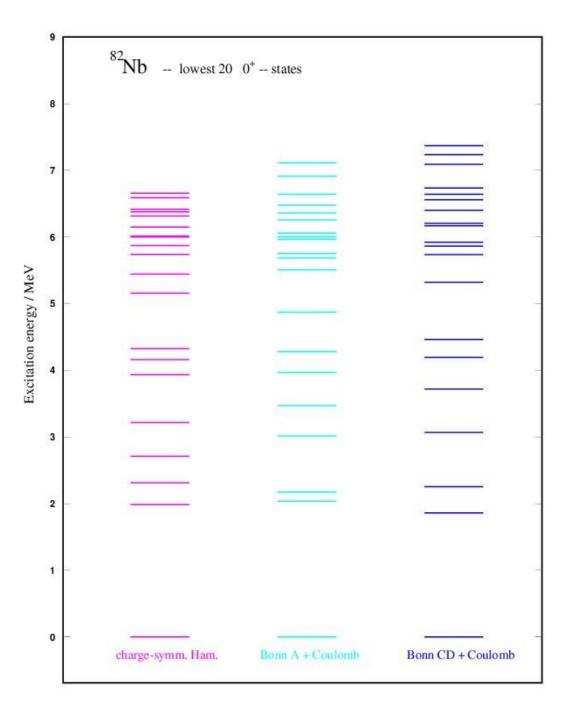
GANIL, J. Garces Narro, PRC63(2001)044307

Charge-symmetric effective Hamiltonian:

- Bonn A potential
- same single particle energies for π and υ

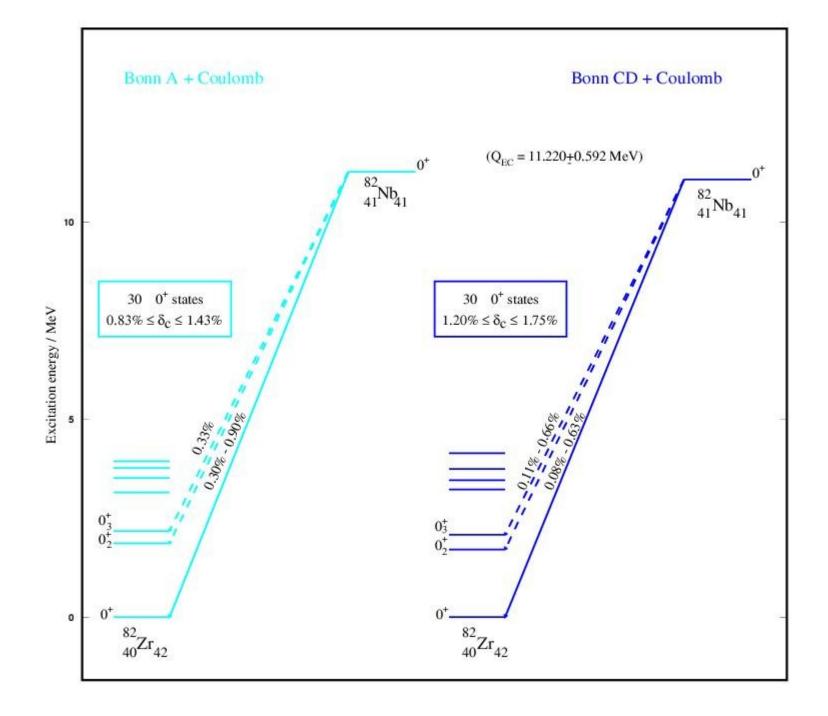

Isospin-symmetry-breaking contributions:

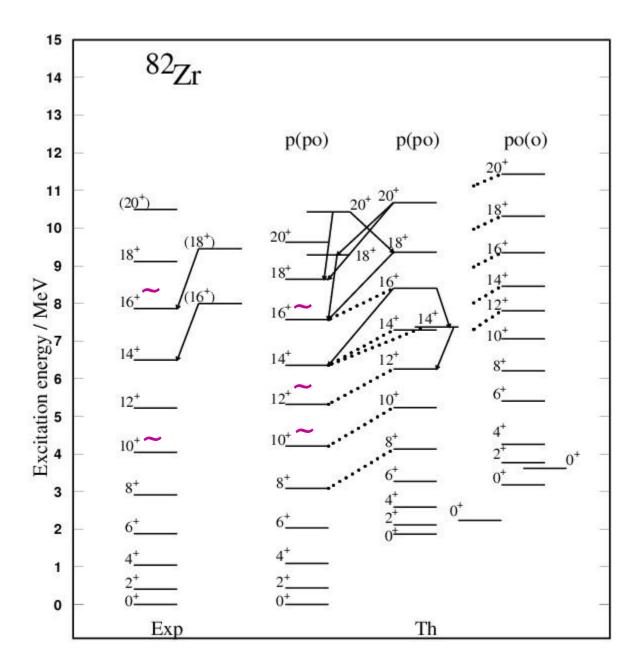

-electromagnetic interaction

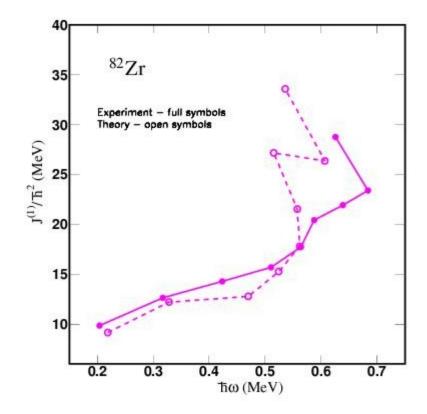

- Coulomb two-body matrix elements
- Coulomb contribution to the single particle energies resulting from the Ca core
- -charge-dependent strong interaction
 - Bonn CD potential

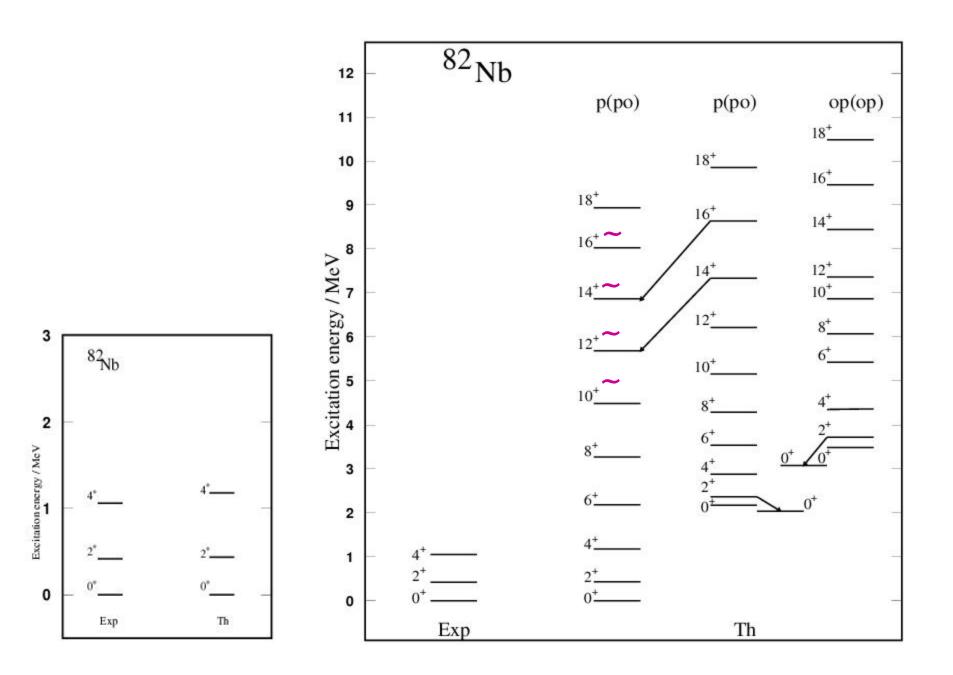
Isospin-symmetry-breaking effective Hamiltonians:

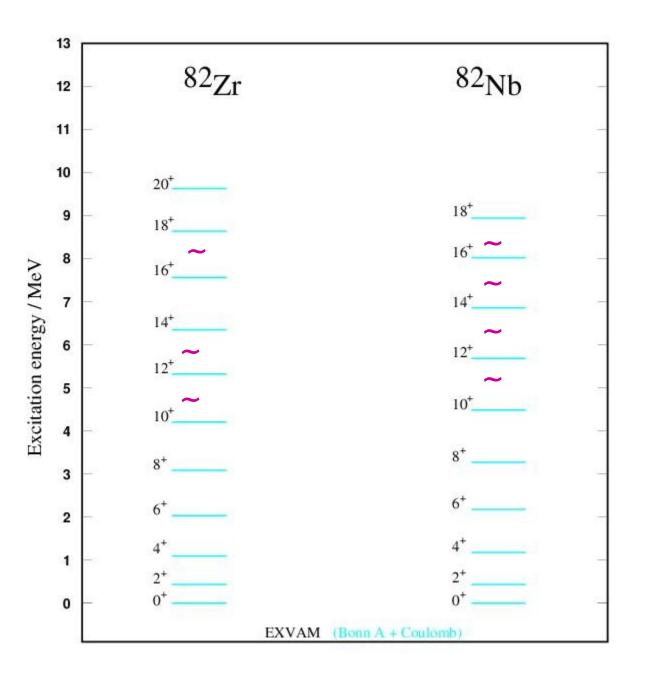
- * Bonn A + Coulomb
- * Bonn CD + Coulomb




The amount	of mixing	for the lowest	calculated 0^+	states of 82 Zr


charge-symm. Ham. o-mixing /p-mixing	Bonn A + Coulomb o-mixing /p-mixing	Bonn CD + Coulomb o-mixing /p-mixing
4(2)%91%	3%94%	3%94%
38(15)% 20(16)(5)%	7(2)% 87(2)%	7% 88(2)%
2% 74(17)%	41(10)% 25(8)(5)(5)%	51(4)% 22(8)(6)(4)%
38(35)(2)% 10(6)(5)%	40(10)% 33(10)(3)%	20(14)(2)% 35(18)(3)%
28(7)% 44(7)(4)(2)%	23(2)% $43(16)(5)%$	9(6)% 46(17)(14)(2)%

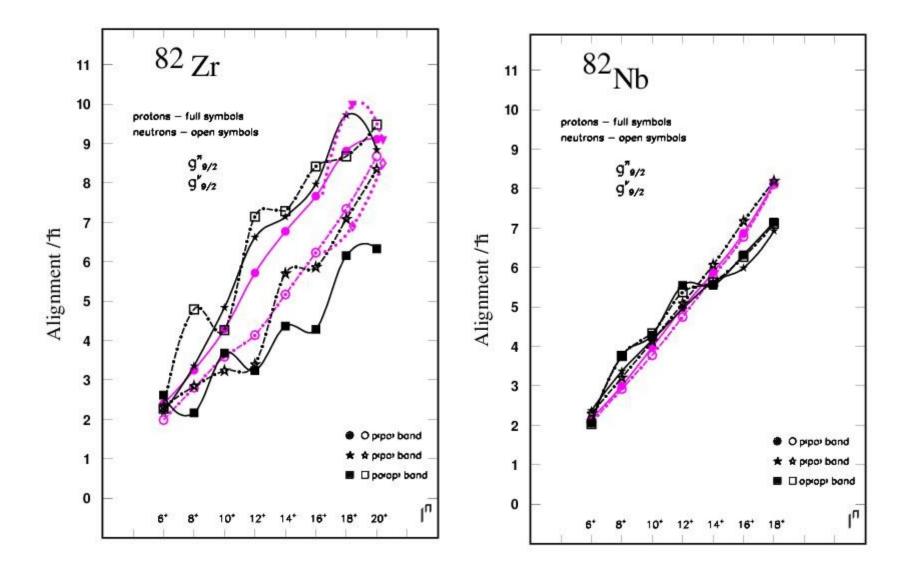

The amount of mixing for the lowest calculated 0^+ states of $^{82}\mathrm{Nb}$

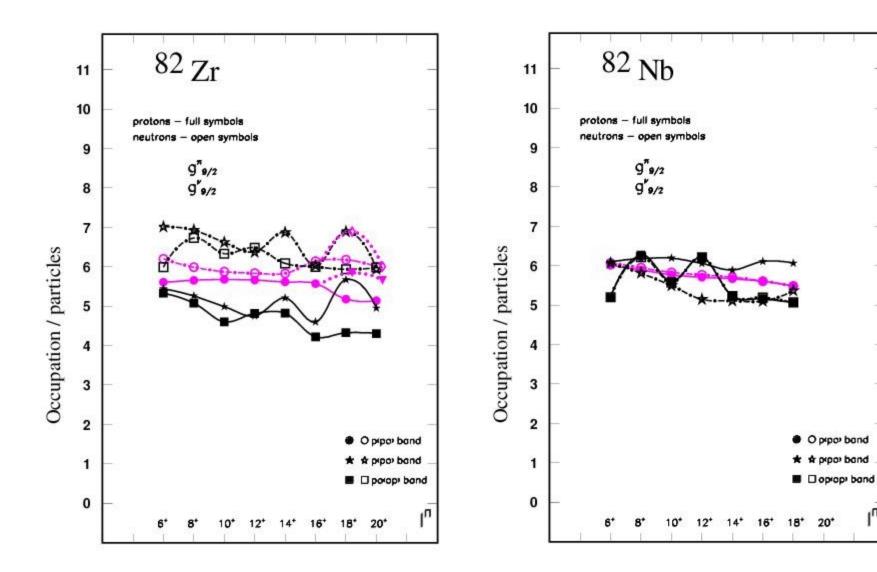

charge-symm. Ham. o-mixing /p-mixing	Bonn A + Coulomb o-mixing /p-mixing	Bonn CD + Coulomb o-mixing /p-mixing
4%91(2)%	3%94%	3%94%
47(21)% 17(8)%	40(9)% 37(5)(3)(2)%	71(4)% 6(5)(4)(3)(3)%
3% 87(3)(2)(2)%	22(3)% 56(10)(3)(2)%	5% 88%
48(32)% 7(6)(3)%	44(18)% 17(5)(5)(4)%	42(7)% 34(3)(3)(2)%
$9(6)(2)\% \ 60(6)(5)(3)(2)\%$	$18(2)\% \ 40(26)(6)(2)\%$	23% 38(27)(5)%

$I^{\pi}[\hbar]$	p(po)-band o-mixing /p-mixing	p(po)-band o-mixing /p-mixing	po(op)-band o-mixing /p-mixing
0+	3(1)%94%	4(1)%91(1)(1)%	38(9)%40(10)(1)%
2^{+}	98%	97%	20(4)%30(21)(18)(4)(2)%
4+	98(1)%	97%	64(2)(2)%16(11)(2)(1)(1)%
6+	98(1)%	93(5)(2)%	36%58(4)%
8+	98(1)%	75(22)(2)%	52(41)(1)%4(2)%
10^{+}	99%	64(34)%	76(19)(1)%2%
12^{+}	99%	1%83(15)%	71(25)%4%
14^{+}	96(2)%	43(2)%48(3)(2)%	64(13)(3)%12(6)(2)%
16^{+}	14%77(8)%	5(3)%79(12)%	93(2)%4%
18^{+}	11(11)(2)%43(31)(2)%		84%8(6)(1)%
20^{+}	24%55(14)(4)%	9(2)%59(26)(2)%	80(3)(2)%7(4)(4)%

The amount of mixing for the lowest calculated states of 82 Zr (Bonn A + Coulomb)

The amount of mixing for the lowest calculated states of ^{82}Nb (Bonn A + Coulomb)


$I^{\pi}[\hbar]$	p(po)-band o-mixing /p-mixing	p(po)-band o-mixing /p-mixing	po(op)-band o-mixing /p-mixing
0+	3(1)%95%	30(4)%44(12)(3)(1)(1)%	15(3)%43(23)(7)(2)(2)(1)%
2^{+}	98%	1(1)%94%	46(1)%27(13)(5)(4)(2)(1)%
4^{+}	98%	1%97%	58(3)%15(12)(6)(3)(2)%
6+	98(2)%	95(3)(2)%	70%28%
8+	95(4)(1)%	95(3)(2)%	63(25)(6)(2)%3%
10^{+}	98%	96(2)%	62(24)(8)%5%
12^{+}	99%	2%93(5)%	58(32)(3)%5(1)%
14+	97(2)%	3%84(10)(2)%	80(8)(5)%4(2)(1)%
16^{+}	2(1)%89(5)(3)%	4%85(7)(2)%	84(3)%10(2)%
18+	14(4)(2)(2)%72(4)(2)%	26(2)(1)(1)%57(7)(6)%	77%23%


$B(E2; I \rightarrow I - 2)$ values (in $e^2 f m^4$) for	the
yrast states of the nucleus ⁸² Zr and ⁸² N	lb

$I^{\pi}[\hbar]$	⁸² Zr Experiment	Theory	⁸² Nb Theory
2^{+}	2328(1058)	1322	1274
4 ⁺	1672(360)	1970	1897
6^+	2539(1058)	2138	2064
8+	2328(635)	2174	2042
10^{+}	1926(487)	2129	1912
12^{+}	1904(635)	1974	1824
14^{+}	> 610	1733	1696
16^{+}		1472	1479
18^{+}		809	774
20^{+}		808	

I^{π}	p(po)	p(po)	po(op)
2^{+}	-74.93	-77.23	-38.73
4+	-95.77	-97.98	22.52
6+	-106.01	-106.85	-15.73
8+	-109.72	-105.31	64.64
10^{+}	-109.54	-94.66	70.57
12^{+}	-105.08	-82.10	68.24
14^{+}	-98.58	-10.76	49.33
16^{+}	-71.42	-62.12	74.31
18^{+}	-37.36	1.008	55.17
20^{+}	-23.44	-52.55	57.43

					$($ in efm^2
for	selected	states of	of the	nucleus	⁸² Zr

п

Gamow-Teller β Decay of ⁷²Kr

CERN/ISOLDE I. Piqueras, Eur. Phys. J. A16(2003)313

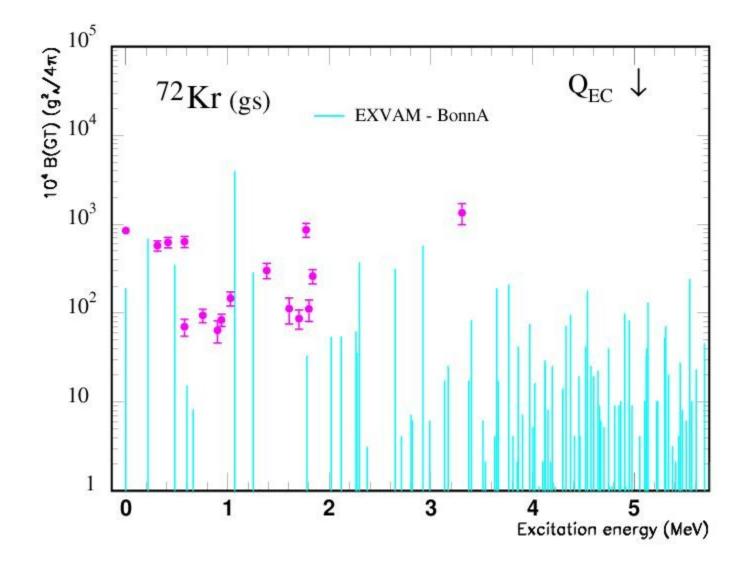
 72 Kr \rightarrow 72 Br

 $Q_{EC} = 5.040 \pm 0.375 \, MeV$

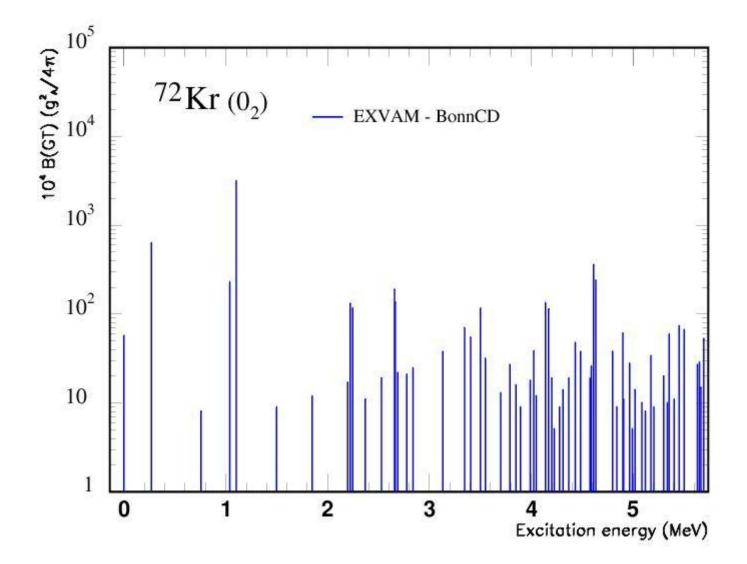
 $0^+_{ground-state} \rightarrow 1^+$

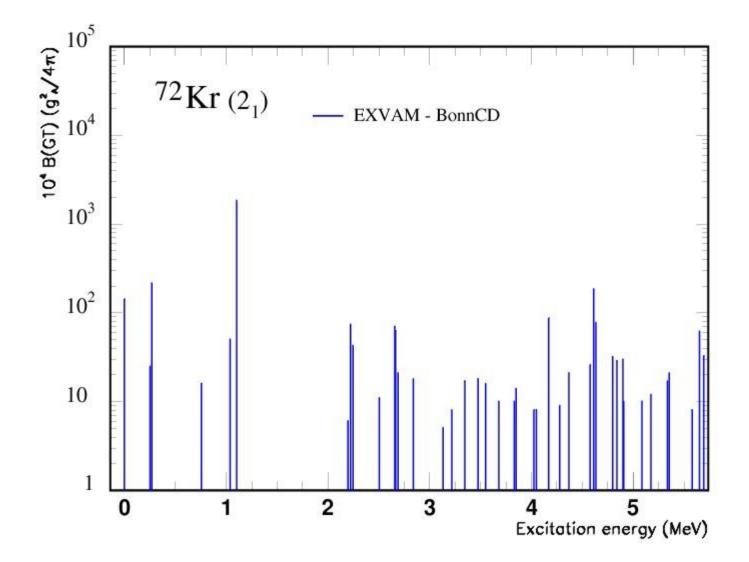
 $0^+_{first-excited} \rightarrow 1^+ \qquad E_{\theta_2^+} = 0.671 \, MeV$

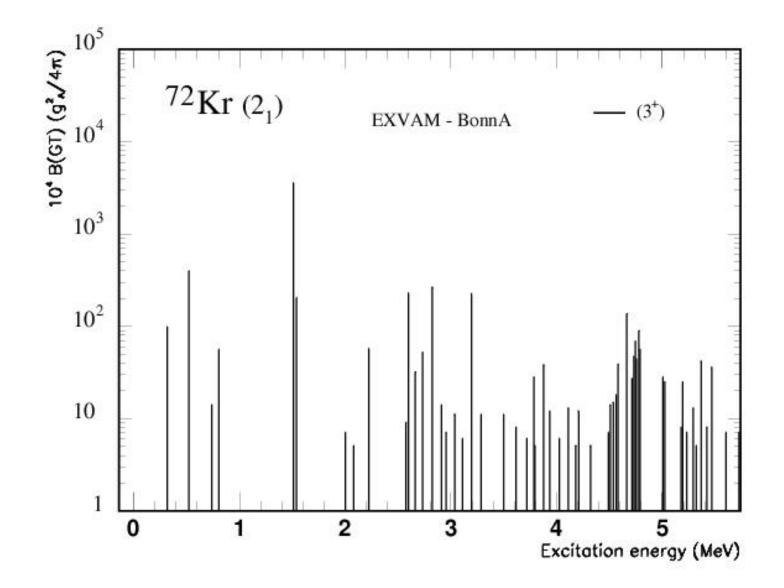
 $\begin{array}{ccc} 2^+_{yrast} & \longrightarrow 1^+ & E_{2_1^+} = 0.710 \ MeV \\ & \longrightarrow 2^+ & \\ & \longrightarrow 3^+ \end{array}$

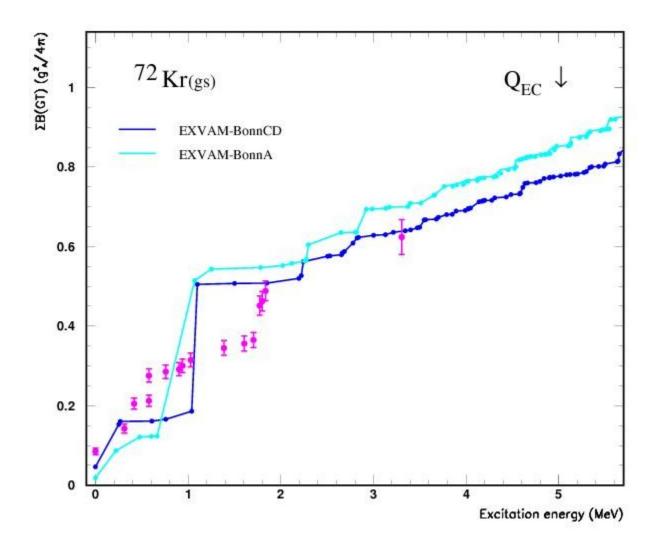

The amount of mixing for the considered states of the 72 Kr nucleus (ms3).

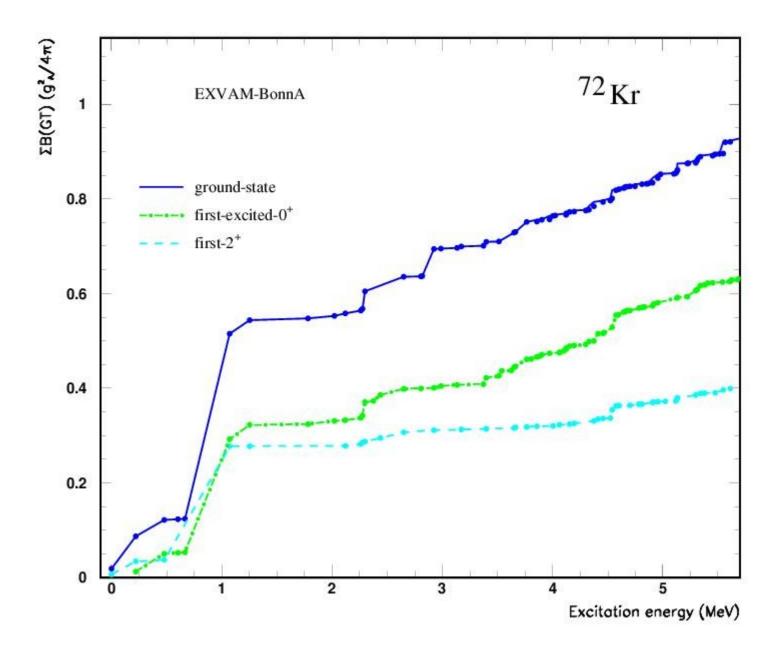

	Bonn A		Bonn CD	
$I[\hbar]$	o-mixing	p-mixing	o-mixing	p-mixing
0_{1}^{+}	64(2)%	29(2)(1)(1)%	50(3)%	38(5)(3)%
0^{+}_{2}	35(2)%	57(3)(1)(1)%	49(2)%	46(3)%
2_{1}^{+}	92(1)%	6%	76(1)%	20(3)%

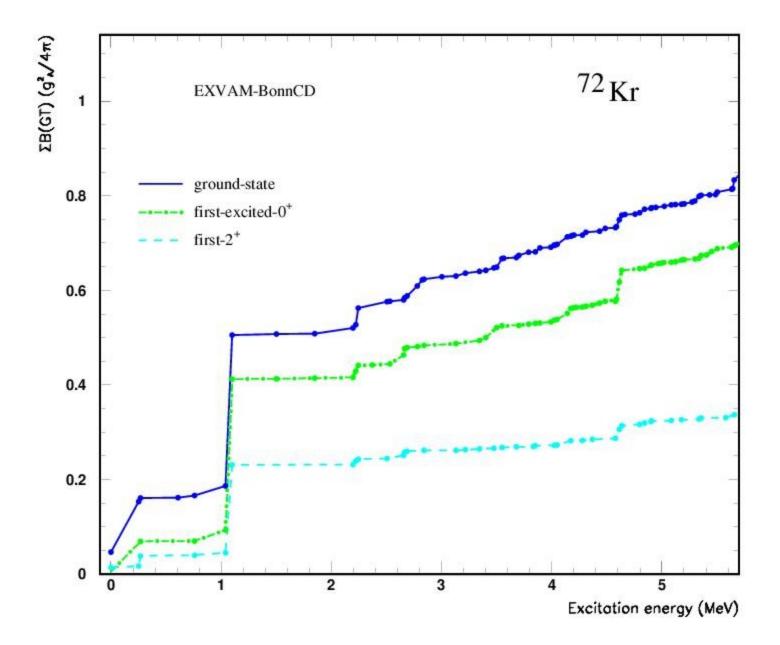

The amount of mixing for the lowest calculated 1^+ states of ⁷²Br with significant B(GT) (Bonn A/Bonn CD). o-mixing /p-mixing 85(12)% 81(11)(4)% 87(2)(2)(2)(2)(1)(1)% 81(4)(4)(2)(2)(1)(1)(1)%78(16)(2)(1)% 78(4)(3)(3)(2)(2)(1)(1)(1)(1)% 49(24)(8)(6)(5)(2)(1)(1)(1)%32(31)(15)(9)(3)(2)(1)(1)(1)(1)% 79(15)(1)% 31(2)(2)(1)%20(16)(13)(2)(1)(1)(1)(1)(1)(1)(1)(1)%85(12)(1)% 49(8)(2)(1)% 34(1)(1)% 32(4)(1)(1)%54(2)(1)(1)(1)%69(26)(1)(1)(1)% 72(6)(4)(4)(3)(3)(2)(2)(1)(1)%69(24)(3)(1)(1)% 68(18)(8)(1)% 66(16)(5)(2)(1)(1)(1)(1)(1)(1)% 2(1)%2(1)% 56(23)(5)(2)(2)(2)(1)(1)(1)(1)%49(26)(9)(5)(3)(1)(1)(1)%

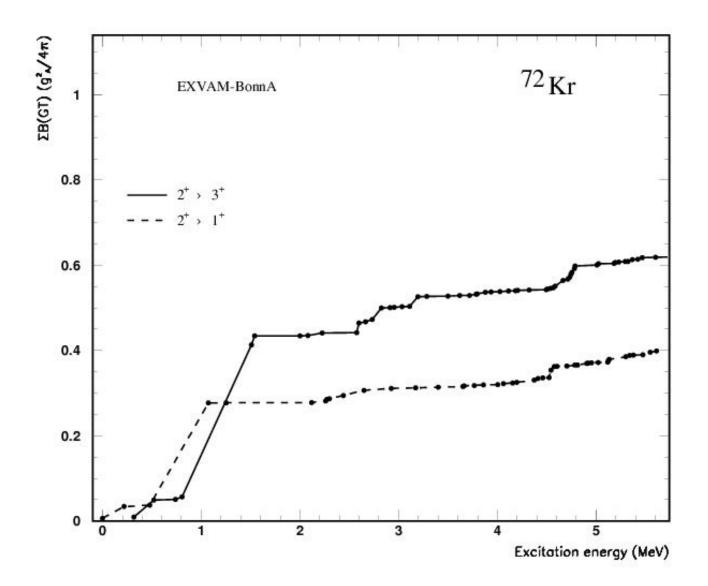

The spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest 1⁺ states of ⁷²Br (Bonn A/BonnCD).


48.5	48.7	- <mark>49.9</mark>	-49.4	46.5	45.5	-51.6	-50.1	-49.5	46.8
-11.5	8.7	-46.5	-48.7	45.4	44.0	-53.5	-39.1	27.0	41.0
-48.9	-46.5	-49.2	42.5	-39.8	35.8	-46.3	41.8	-45.0	-43.5
18.0		- California							
40.4	10.5	-11.5	-49.6	46.6	-51.8	45.6	-50.2	-50.2	-51.8
			-49.6 -49.2						









Summary and outlook

• the isospin-symmetry-breaking effect on the superallowed Fermi β decay of ⁸²Nb \rightarrow ⁸²Zr was investigated for the first time within the *complex* Excited Vampir model describing self-consistently both the analogue and non-analogue Fermi branches. Using this approach most of the 'radial mismatch problem' is avoided.

• the *complex* Excited Vampir description of the properties of low and high spins in even-even and odd-odd members of the T=1 multiplet for the A=82 nuclei is in good agreement with the available data

• the Gamow-Teller strength distributions as well as the accumulated strengths for the decay of the ground state, first-excited 0⁺ and yrast 2⁺ of ⁷²Kr to the 1⁺ (and for yrast 2⁺, also to the 2⁺ and 3⁺) states in the β window in ⁷²Br are self-consistently described for the first time. Good agreement with the available data is revealed. For the temperatures of the X-ray bursts the decay of the lowest excited states will not influence the halh-life of the ⁷²Kr

• improvements require extension of the single-particle and many-body model spaces

• uncertainties in the effective interaction require systematic investigations

In collaboration with:

K. W. Schmid, Amand Faessler

Tuebingen University, Germany

O. Radu

National Institute for Physics and Nuclear Engineering, Bucharest, Romania