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LCG Workload Management 
System

• The user interacts with Grid via a Workload Management Workload Management 
System (WMS)System (WMS)

• The Goal of WMS is the distributed scheduling and 
resource management in a Grid environment.

• What does it allow Grid users to do?
To submit their jobs
To execute them on the “best resources”

• The WMS tries to optimize the usage of resources
To get information about their status
To retrieve their output



EGEE Usage and Programming Introduction – October 6, 2004  - 4

Job Preparation 

• Information to be specified when a job has to be submitted:
Job characteristics 
Job requirements and preferences on the computing resources

• Also including software dependencies
Job data requirements

• Information specified using a Job Description Language (JDL)
Based upon Condor’s CLASSified ADvertisement language (ClassAd)

• Fully extensible language
• A ClassAd

–Constructed with the classad construction operator []
–It is a sequence of attributes separated by semi-colons.
–An attribute is a pair (key, value), where value can be a Boolean, an Integer, a list of strings, 
…        

»<attribute> = <value>; 

• So, the JDL allows definition of a set of attribute, the WMS takes into 
account when making its scheduling decision
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Job Description Language 

• The supported attributes are grouped in two 
categories:

Job Attributes
• Define the job itself

Resources
• Taken into account by the RB for carrying out the matchmaking 

algorithm (to choose the “best” resource where to submit the job)
• Computing Resource

– Used to build expressions of Requirements and/or Rank attributes by 
the user

– Have to be prefixed with “other.”
• Data and Storage resources 

– Input data to process, SE where to store output data, protocols 
spoken by application when accessing SEs
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JDL: Relevant attributes 
• JobType

Normal (simple, sequential job), Interactive, MPICH, Checkpointable
Or combination of them

• Executable (mandatory)
The command name

• Arguments (optional)
Job command line arguments

• StdInput, StdOutput, StdError (optional)
Standard input/output/error of the job

• Environment
List of environment settings

• InputSandbox (optional)
List of files on the UI local disk needed by the job for running
The listed files will automatically staged to the remote resource

• OutputSandbox (optional)
List of files, generated by the job, which have to be retrieved
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JDL: Relevant attributes 

• Requirements
Job requirements on computing resources 
Specified using attributes of resources published in the Information Service
If not specified, default value defined in UI configuration file is considered

• Default: other.GlueCEStateStatus == "Production" (the resource has to be able to 
accept jobs and dispatch them on WNs)

• Rank
Expresses preference (how to rank resources that have already met the 
Requirements expression)
Specified using attributes of resources published in the Information Service
If not specified, default value defined in the UI configuration file is considered 

• Default:  - other.GlueCEStateEstimatedResponseTime (the lowest estimated 
traversal time)

• Default:  other.GlueCEStateFreeCPUs (the highest number of free CPUs) for parallel 
jobs (see later)



EGEE Usage and Programming Introduction – October 6, 2004  - 8

JDL: Relevant attributes 

• InputData
Refers to data used as input by the job: these data are published in 
the Replica Location Service (RLS) and stored in the SEs)
LFNs and/or GUIDs

• DataAccessProtocol (mandatory if InputData has been 
specified)

The protocol or the list of protocols which the application is able to 
speak with for accessing InputData on a given SE

• OutputSE
The Uniform Resource Identifier of the output SE
RB uses it to choose a CE that is compatible with the job and is close 
to  SE
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Example of JDL file

[ 

JobType=“Normal”;

Executable = “gridTest”;

StdError = “stderr.log”;

StdOutput = “stdout.log”;

InputSandbox = {“home/joda/test/gridTest”};

OutputSandbox = {“stderr.log”, “stdout.log”};

InputData = {“lfn:green”, “guid:red”};

DataAccessProtocol = “gridftp”;

Requirements = other.GlueHostOperatingSystemNameOpSys
== “LINUX”   

&& other.GlueCEStateFreeCPUs>=4;

Rank = other.GlueCEPolicyMaxCPUTime;

]
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Job Submission 

edg-job-submit [–r <res_id>] [-c 
<config file>] [-vo <VO>] [-o <output 
file>] <job.jdl>
-r the job is submitted directly to the computing element identified by 

<res_id>
-c the configuration file <config file> is pointed by the UI instead of the 

standard configuration file
-vo the Virtual Organization (if user is not happy with the one specified 

in the UI configuration file)
-o the generated edg_jobId is written in the <output file>

Useful for other commands, e.g.:
edg-job-status –i <input file> (or edg_jobId)

-i the status information about edg_jobId contained in the <input file> are 
displayed
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edg-job-submit myjob.jdl
Myjob.jdl

JobType = “Normal”;
Executable     = "$(CMS)/exe/sum.exe";
InputSandbox = {"/home/user/WP1testC","/home/file*”, "/home/user/DATA/*"};
OutputSandbox = {“sim.err”, “test.out”, “sim.log"};
Requirements   = other. GlueHostOperatingSystemName == “linux" && 
other. GlueHostOperatingSystemRelease == "Red Hat 6.2“ && 
other.GlueCEPolicyMaxWallClockTime > 10000;
Rank  = other.GlueCEStateFreeCPUs;

Job Description Language
(JDL) to specify job 
characteristics and 
requirements
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Job monitoring
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Possible job states
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Job resubmission

• If something goes wrong, the WMS tries to 
reschedule and resubmit the job (possibly on a 
different resource satisfying all the requirements)

• Maximum number of resubmissions: 
min(RetryCount, MaxRetryCount)

RetryCount: JDL attribute
MaxRetryCount: attribute in the “RB” configuration file 

• E.g., to disable job resubmission for a particular 
job: RetryCount=0; in the JDL file
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Other (most relevant) UI commands

•edg-job-list-match
Lists resources matching a job description
Performs the matchmaking without submitting the job

• edg-job-cancel
Cancels a given job

• edg-job-status
Displays the status of the job 

• edg-job-get-output
Returns the job-output (the OutputSandbox files) to the user

• edg-job-get-logging-info
Displays logging information about submitted jobs (all the events “pushed” by 
the various components of the WMS)
Very useful for debug purposes
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WMS APIs

• The WMS makes C++ and Java APIs available 
for UI, LB consumer and client.
• In the following document:

http://server11.infn.it/workload-grid/docs/DataGrid-01-TEN-0118-1_2.pdf

details about the rpms containing the APIs are 
given. 
• Correspondent doxigen documentation can be 
found in share/doc area. Ex.:

$EDG_LOCATION/share/doc/edg-wl-ui-api-cpp-lcg2.1.49/html 

• BrokerInfo CLI and APIs are described:
http://server11.infn.it/workload-grid/docs/edg-brokerinfo-user-guide-v2_2.pdf
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WMS APIs

#include <iostream>
#include <string>

#include "edg/workload/logging/client/JobStatus.h"
#include "edg/workload/common/utilities/Exceptions.h"
#include "edg/workload/common/requestad/JobAd.h"
#include "edg/workload/userinterface/client/Job.h"

using namespace std ;
using namespace edg::workload::common::utilities ;
using namespace edg::workload::logging::client ;
/* **************************************************************************
*  Example based on edg-wl-job-submit.cpp, edg-wl-job-status.cpp
*  for further examples see also:

http://isscvs.cern.ch:8180/cgi-
bin/cvsweb.cgi/workload/userinterface/test/?cvsroot=lcgware

*
*  author: Heinz.Stockinger@cern.ch
*
*  Example usage on GILDA:
*  ./workload Hello.jdl grid004.ct.infn.it 7772 grid004.ct.infn.it 9000
*
*/ 

%  ./workload Hello.jdl lxb0704.cern.ch 7772 lxb0704.cern.ch 9000

CVS source of 
examples
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WMS APIs

int main (int argc,char *argv[])
{

cout << "Workload Management API Example " << endl;

try{
if (argc < 6 || strcmp(argv[1],"--help") == 0)  {

cout << "Usage : " << argv[0] 
<< "  <JDL file>  <ns host> <ns port> <lbHost> <lbPort> [<ce_id>]" 
<< endl;

return -1;
}

edg::workload::common::requestad::JobAd jab;

jab.fromFile ( argv[1] ) ;
edg::workload::userinterface::Job   job(jab);
job.setLoggerLevel (6) ;

cout << "Submit job to " << argv[2] << ":" << argv[3]  << endl;
cout << "LB address: "<< argv[4] << ":" << argv[5]  << endl;
cout << "Please wait..." << endl;

// We now submit the job. If a CE is given (argv[6]), we send it directly 
// to the specified CE
//
if (argc ==6)

job.submit (argv[2], atoi(argv[3]), argv[4], atoi(argv[5]),  "") ;
else
job.submit (argv[2], atoi(argv[3]), argv[4], atoi(argv[5]), argv[6] ) ;

cout << "Job Submission OK; JobID= "  
<< job.getJobId()->toString()  << endl << flush ;

• The JobAd class 
provides users with 
management
operations on JDL files

• We instantiate a Job 
object that corresponds
to our JDL file and 
handles our job
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WMS APIs

// Print some detailed error information in case the job did not
// succeed.
//
if ((status.status == 8) || (status.status == 9)) {

printStatus(status);
exit(-1);

}

// Now that the job has successfully finished, we retrieve the output
//
string outputDir = "/tmp";
job.getOutput(outputDir);

cout << "\nThe output has been retrieved and stored in the directory "
<< outputDir << endl;

return 0;

} catch (Exception &exc){
cerr << "\nWMS Error\n";
cerr <<  exc.printStackTrace();

}    
return -1;

}

The job 
finished

successfully. 
We

can retrieve the
output.

The job 
finished

successfully. 
We

can retrieve the
output.
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WMS APIs

C             = gcc-3.2.2
GLOBUS_FLAVOR  = gcc32

ARES_LIBS =  -lares
BOOST_LIBS = -L/opt/boost/gcc-3.2.2/lib/release -lboost_fs \

-lboost_thread -lpthread -lboost_regex
CLASSAD_LIBS = -L/opt/classads/gcc-3.2.2/lib -lclassad
EXPAT_LIBS =  -lexpat
GLOBUS_THR_LIBS =  -L/opt/globus/lib -lglobus_gass_copy_gcc32dbgpthr \

-lglobus_ftp_client_gcc32dbgpthr -lglobus_gass_transfer_gcc32dbgpthr \
-lglobus_ftp_control_gcc32dbgpthr -lglobus_io_gcc32dbgpthr \
-lglobus_gss_assist_gcc32dbgpthr -lglobus_gssapi_gsi_gcc32dbgpthr \
-lglobus_gsi_proxy_core_gcc32dbgpthr \
-lglobus_gsi_credential_gcc32dbgpthr \
-lglobus_gsi_callback_gcc32dbgpthr -lglobus_oldgaa_gcc32dbgpthr \
-lglobus_gsi_sysconfig_gcc32dbgpthr \
-lglobus_gsi_cert_utils_gcc32dbgpthr \
-lglobus_openssl_gcc32dbgpthr -lglobus_proxy_ssl_gcc32dbgpthr \
-lglobus_openssl_error_gcc32dbgpthr -lssl_gcc32dbgpthr \
-lcrypto_gcc32dbgpthr -lglobus_common_gcc32dbgpthr

GLOBUS_COMMON_THR_LIBS =  -L/opt/globus/lib -L/opt/globus/lib \
-lglobus_common_gcc32dbgpthr

GLOBUS_SSL_THR_LIBS =  -L/opt/globus/lib -L/opt/globus/lib \
-lssl_gcc32dbgpthr -lcrypto_gcc32dbgpthr

VOMS_CPP_LIBS = -L/opt/edg/lib -lvomsapi_gcc32dbgpthr

all: workload 

workload: workload.o
$(CC) -o workload \
-L${EDG_LOCATION}/lib -ledg_wl_common_requestad \
–lpthread \
-ledg_wl_userinterface_client \
-ledg_wl_exceptions -ledg_wl_logging \
-ledg_wl_loggingpp \
-ledg_wl_globus_ftp_util -ledg_wl_util \
-ledg_wl_common_requestad \
-ledg_wl_jobid -ledg_wl_logger -ledg_wl_gsisocket_pp \
-ledg_wl_checkpointing -ledg_wl_ssl_helpers \
-ledg_wl_ssl_pthr_helpers \
$(VOMS_CPP_LIBS) \
$(CLASSAD_LIBS) $(EXPAT_LIBS) $(ARES_LIBS) \
$(BOOST_LIBS) \
$(GLOBUS_THR_LIBS) \
$(GLOBUS_COMMON_THR_LIBS) \
$(GLOBUS_SSL_THR_LIBS) \
workload.o 

workload.o: workload.cpp
$(CC) -I ${EDG_LOCATION}/include \
-I/opt/classads/gcc-3.2.2/include -c workload.cpp

clean:
rm -rf workload workload.o

Makefile
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Hands-on time!

• Create an executable that, using the 
BrokerInfo APIsBrokerInfo APIs, lists all close SEs.
• Submit this job via a JDL file
• Retrive the output of the job
• Check that the output contains the 
information you want 
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Summary

• We explained the main functionality of the 
Workload Management System
• The JDL file describe a user job
• A set of commands allow the user to get 
status information and retrieve relevant data
• APIs are available in C++ and Java for UI, LB 
and BrokerInfo.
• We exercized the UI C++ APIs


