
EGEE is a project funded by the European Union under contract IST-2003-508833

Workload
Management

Flavia Donno
Section Leader for

LCG Experiment Integration and Support
CERN IT

Biomed Application Developer’s Course
6th October 2004

www.eu-egee.org

EGEE Usage and Programming Introduction – October 6, 2004 - 2

Contents

• The EDG Workload Management System
• Job Preparation

Job Description Language
• Job submission and job status monitoring
• WMS Matchmaking
• Different job types

Normal jobs
Interactive jobs
Checkpointable jobs
Parallel jobs

• APIs Overview

EGEE Usage and Programming Introduction – October 6, 2004 - 3

LCG Workload Management
System

• The user interacts with Grid via a Workload Management Workload Management
System (WMS)System (WMS)

• The Goal of WMS is the distributed scheduling and
resource management in a Grid environment.

• What does it allow Grid users to do?
To submit their jobs
To execute them on the “best resources”

• The WMS tries to optimize the usage of resources
To get information about their status
To retrieve their output

EGEE Usage and Programming Introduction – October 6, 2004 - 4

Job Preparation

• Information to be specified when a job has to be submitted:
Job characteristics
Job requirements and preferences on the computing resources

• Also including software dependencies
Job data requirements

• Information specified using a Job Description Language (JDL)
Based upon Condor’s CLASSified ADvertisement language (ClassAd)

• Fully extensible language
• A ClassAd

–Constructed with the classad construction operator []
–It is a sequence of attributes separated by semi-colons.
–An attribute is a pair (key, value), where value can be a Boolean, an Integer, a list of strings,
…

»<attribute> = <value>;

• So, the JDL allows definition of a set of attribute, the WMS takes into
account when making its scheduling decision

EGEE Usage and Programming Introduction – October 6, 2004 - 5

Job Description Language

• The supported attributes are grouped in two
categories:

Job Attributes
• Define the job itself

Resources
• Taken into account by the RB for carrying out the matchmaking

algorithm (to choose the “best” resource where to submit the job)
• Computing Resource

– Used to build expressions of Requirements and/or Rank attributes by
the user

– Have to be prefixed with “other.”
• Data and Storage resources

– Input data to process, SE where to store output data, protocols
spoken by application when accessing SEs

EGEE Usage and Programming Introduction – October 6, 2004 - 6

JDL: Relevant attributes
• JobType

Normal (simple, sequential job), Interactive, MPICH, Checkpointable
Or combination of them

• Executable (mandatory)
The command name

• Arguments (optional)
Job command line arguments

• StdInput, StdOutput, StdError (optional)
Standard input/output/error of the job

• Environment
List of environment settings

• InputSandbox (optional)
List of files on the UI local disk needed by the job for running
The listed files will automatically staged to the remote resource

• OutputSandbox (optional)
List of files, generated by the job, which have to be retrieved

EGEE Usage and Programming Introduction – October 6, 2004 - 7

JDL: Relevant attributes

• Requirements
Job requirements on computing resources
Specified using attributes of resources published in the Information Service
If not specified, default value defined in UI configuration file is considered

• Default: other.GlueCEStateStatus == "Production" (the resource has to be able to
accept jobs and dispatch them on WNs)

• Rank
Expresses preference (how to rank resources that have already met the
Requirements expression)
Specified using attributes of resources published in the Information Service
If not specified, default value defined in the UI configuration file is considered

• Default: - other.GlueCEStateEstimatedResponseTime (the lowest estimated
traversal time)

• Default: other.GlueCEStateFreeCPUs (the highest number of free CPUs) for parallel
jobs (see later)

EGEE Usage and Programming Introduction – October 6, 2004 - 8

JDL: Relevant attributes

• InputData
Refers to data used as input by the job: these data are published in
the Replica Location Service (RLS) and stored in the SEs)
LFNs and/or GUIDs

• DataAccessProtocol (mandatory if InputData has been
specified)

The protocol or the list of protocols which the application is able to
speak with for accessing InputData on a given SE

• OutputSE
The Uniform Resource Identifier of the output SE
RB uses it to choose a CE that is compatible with the job and is close
to SE

EGEE Usage and Programming Introduction – October 6, 2004 - 9

Example of JDL file

[

JobType=“Normal”;

Executable = “gridTest”;

StdError = “stderr.log”;

StdOutput = “stdout.log”;

InputSandbox = {“home/joda/test/gridTest”};

OutputSandbox = {“stderr.log”, “stdout.log”};

InputData = {“lfn:green”, “guid:red”};

DataAccessProtocol = “gridftp”;

Requirements = other.GlueHostOperatingSystemNameOpSys
== “LINUX”

&& other.GlueCEStateFreeCPUs>=4;

Rank = other.GlueCEPolicyMaxCPUTime;

]

EGEE Usage and Programming Introduction – October 6, 2004 - 10

Job Submission

edg-job-submit [–r <res_id>] [-c
<config file>] [-vo <VO>] [-o <output
file>] <job.jdl>
-r the job is submitted directly to the computing element identified by

<res_id>
-c the configuration file <config file> is pointed by the UI instead of the

standard configuration file
-vo the Virtual Organization (if user is not happy with the one specified

in the UI configuration file)
-o the generated edg_jobId is written in the <output file>

Useful for other commands, e.g.:
edg-job-status –i <input file> (or edg_jobId)

-i the status information about edg_jobId contained in the <input file> are
displayed

EGEE Usage and Programming Introduction – October 6, 2004 - 11

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

EGEE Usage and Programming Introduction – October 6, 2004 - 12

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

UI: allows users to
access the functionalities
of the WMS
(via command line, GUI,
C++ and Java APIs)

submitted

Job
Status

EGEE Usage and Programming Introduction – October 6, 2004 - 13

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

submitted

Job
Status

edg-job-submit myjob.jdl
Myjob.jdl

JobType = “Normal”;
Executable = "$(CMS)/exe/sum.exe";
InputSandbox = {"/home/user/WP1testC","/home/file*”, "/home/user/DATA/*"};
OutputSandbox = {“sim.err”, “test.out”, “sim.log"};
Requirements = other. GlueHostOperatingSystemName == “linux" &&
other. GlueHostOperatingSystemRelease == "Red Hat 6.2“ &&
other.GlueCEPolicyMaxWallClockTime > 10000;
Rank = other.GlueCEStateFreeCPUs;

Job Description Language
(JDL) to specify job
characteristics and
requirements

EGEE Usage and Programming Introduction – October 6, 2004 - 14

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submitted

Input
Sandbox
files

Job

NS: network daemon
responsible for accepting
incoming requests

EGEE Usage and Programming Introduction – October 6, 2004 - 15

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submitted

WM: responsible to take
the appropriate actions to
satisfy the request

EGEE Usage and Programming Introduction – October 6, 2004 - 16

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submittedMatch-
Maker/
Broker

Where must this
job be
executed ?

EGEE Usage and Programming Introduction – October 6, 2004 - 17

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submittedMatch-
Maker/
Broker

Matchmaker: responsible
to find the “best” CE
where to submit a job

EGEE Usage and Programming Introduction – October 6, 2004 - 18

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submittedMatch-
Maker/
Broker

Where are (which SEs)
the needed data ?

What is the
status of the

Grid ?

EGEE Usage and Programming Introduction – October 6, 2004 - 19

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submittedMatch-
Maker/
Broker

CE choice

EGEE Usage and Programming Introduction – October 6, 2004 - 20

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

waiting

submitted

Job
Adapter

JA: responsible for the final “touches”
to the job before performing submission
(e.g. creation of wrapper script, etc.)

EGEE Usage and Programming Introduction – October 6, 2004 - 21

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

JC: responsible for the
actual job management
operations (done via
CondorG)

submitted

waiting

ready

EGEE Usage and Programming Introduction – October 6, 2004 - 22

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

CE characts
& status

SE characts
& status

Job
Status

RB
storage

Job

Input
Sandbox
files

submitted

waiting

ready

scheduled

EGEE Usage and Programming Introduction – October 6, 2004 - 23

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

Job
Status

RB
storage

submitted

waiting

ready

scheduled

running
“Grid enabled”
data transfers/

accesses

Job

EGEE Usage and Programming Introduction – October 6, 2004 - 24

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

Job
Status

RB
storage

Output
Sandbox
files

submitted

waiting

ready

scheduled

running

done

EGEE Usage and Programming Introduction – October 6, 2004 - 25

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

Job
Status

RB
storage

submitted

waiting

ready

scheduled

running

done

edg-job-get-output <dg-job-id>

EGEE Usage and Programming Introduction – October 6, 2004 - 26

Job Submission

UI
Network
Server

Job Contr.
-

CondorG

Workload
Manager

RLS

Inform.
Service

Computing
Element Storage

Element

RB node

Job
Status

RB
storage

submitted

waiting

ready

scheduled

running

done

Output
Sandbox
files

cleared

EGEE Usage and Programming Introduction – October 6, 2004 - 27

Job monitoring

UI

Log
Monitor

Logging &
Bookkeeping

Network
Server

Job Contr.
-

CondorG

Workload
Manager

Computing
Element

RB node

LM: parses CondorG log
file (where CondorG logs
info about jobs) and notifies LB

LB: receives and stores
job events; processes
corresponding job status

Log of
job events

edg-job-status <dg-job-id>
edg-job-get-logging-info <dg-job-
id>

Job
status

EGEE Usage and Programming Introduction – October 6, 2004 - 28

Possible job states

EGEE Usage and Programming Introduction – October 6, 2004 - 29

Job resubmission

• If something goes wrong, the WMS tries to
reschedule and resubmit the job (possibly on a
different resource satisfying all the requirements)

• Maximum number of resubmissions:
min(RetryCount, MaxRetryCount)

RetryCount: JDL attribute
MaxRetryCount: attribute in the “RB” configuration file

• E.g., to disable job resubmission for a particular
job: RetryCount=0; in the JDL file

EGEE Usage and Programming Introduction – October 6, 2004 - 30

Other (most relevant) UI commands

•edg-job-list-match
Lists resources matching a job description
Performs the matchmaking without submitting the job

• edg-job-cancel
Cancels a given job

• edg-job-status
Displays the status of the job

• edg-job-get-output
Returns the job-output (the OutputSandbox files) to the user

• edg-job-get-logging-info
Displays logging information about submitted jobs (all the events “pushed” by
the various components of the WMS)
Very useful for debug purposes

EGEE Usage and Programming Introduction – October 6, 2004 - 31

WMS APIs

• The WMS makes C++ and Java APIs available
for UI, LB consumer and client.
• In the following document:

http://server11.infn.it/workload-grid/docs/DataGrid-01-TEN-0118-1_2.pdf

details about the rpms containing the APIs are
given.
• Correspondent doxigen documentation can be
found in share/doc area. Ex.:

$EDG_LOCATION/share/doc/edg-wl-ui-api-cpp-lcg2.1.49/html

• BrokerInfo CLI and APIs are described:
http://server11.infn.it/workload-grid/docs/edg-brokerinfo-user-guide-v2_2.pdf

EGEE Usage and Programming Introduction – October 6, 2004 - 32

WMS APIs

#include <iostream>
#include <string>

#include "edg/workload/logging/client/JobStatus.h"
#include "edg/workload/common/utilities/Exceptions.h"
#include "edg/workload/common/requestad/JobAd.h"
#include "edg/workload/userinterface/client/Job.h"

using namespace std ;
using namespace edg::workload::common::utilities ;
using namespace edg::workload::logging::client ;
/* **
* Example based on edg-wl-job-submit.cpp, edg-wl-job-status.cpp
* for further examples see also:

http://isscvs.cern.ch:8180/cgi-
bin/cvsweb.cgi/workload/userinterface/test/?cvsroot=lcgware

*
* author: Heinz.Stockinger@cern.ch
*
* Example usage on GILDA:
* ./workload Hello.jdl grid004.ct.infn.it 7772 grid004.ct.infn.it 9000
*
*/

% ./workload Hello.jdl lxb0704.cern.ch 7772 lxb0704.cern.ch 9000

CVS source of
examples

EGEE Usage and Programming Introduction – October 6, 2004 - 33

WMS APIs

int main (int argc,char *argv[])
{

cout << "Workload Management API Example " << endl;

try{
if (argc < 6 || strcmp(argv[1],"--help") == 0) {

cout << "Usage : " << argv[0]
<< " <JDL file> <ns host> <ns port> <lbHost> <lbPort> [<ce_id>]"
<< endl;

return -1;
}

edg::workload::common::requestad::JobAd jab;

jab.fromFile (argv[1]) ;
edg::workload::userinterface::Job job(jab);
job.setLoggerLevel (6) ;

cout << "Submit job to " << argv[2] << ":" << argv[3] << endl;
cout << "LB address: "<< argv[4] << ":" << argv[5] << endl;
cout << "Please wait..." << endl;

// We now submit the job. If a CE is given (argv[6]), we send it directly
// to the specified CE
//
if (argc ==6)

job.submit (argv[2], atoi(argv[3]), argv[4], atoi(argv[5]), "") ;
else
job.submit (argv[2], atoi(argv[3]), argv[4], atoi(argv[5]), argv[6]) ;

cout << "Job Submission OK; JobID= "
<< job.getJobId()->toString() << endl << flush ;

• The JobAd class
provides users with
management
operations on JDL files

• We instantiate a Job
object that corresponds
to our JDL file and
handles our job

EGEE Usage and Programming Introduction – October 6, 2004 - 34

WMS APIs

// Print some detailed error information in case the job did not
// succeed.
//
if ((status.status == 8) || (status.status == 9)) {

printStatus(status);
exit(-1);

}

// Now that the job has successfully finished, we retrieve the output
//
string outputDir = "/tmp";
job.getOutput(outputDir);

cout << "\nThe output has been retrieved and stored in the directory "
<< outputDir << endl;

return 0;

} catch (Exception &exc){
cerr << "\nWMS Error\n";
cerr << exc.printStackTrace();

}
return -1;

}

The job
finished

successfully.
We

can retrieve the
output.

The job
finished

successfully.
We

can retrieve the
output.

EGEE Usage and Programming Introduction – October 6, 2004 - 35

WMS APIs

C = gcc-3.2.2
GLOBUS_FLAVOR = gcc32

ARES_LIBS = -lares
BOOST_LIBS = -L/opt/boost/gcc-3.2.2/lib/release -lboost_fs \

-lboost_thread -lpthread -lboost_regex
CLASSAD_LIBS = -L/opt/classads/gcc-3.2.2/lib -lclassad
EXPAT_LIBS = -lexpat
GLOBUS_THR_LIBS = -L/opt/globus/lib -lglobus_gass_copy_gcc32dbgpthr \

-lglobus_ftp_client_gcc32dbgpthr -lglobus_gass_transfer_gcc32dbgpthr \
-lglobus_ftp_control_gcc32dbgpthr -lglobus_io_gcc32dbgpthr \
-lglobus_gss_assist_gcc32dbgpthr -lglobus_gssapi_gsi_gcc32dbgpthr \
-lglobus_gsi_proxy_core_gcc32dbgpthr \
-lglobus_gsi_credential_gcc32dbgpthr \
-lglobus_gsi_callback_gcc32dbgpthr -lglobus_oldgaa_gcc32dbgpthr \
-lglobus_gsi_sysconfig_gcc32dbgpthr \
-lglobus_gsi_cert_utils_gcc32dbgpthr \
-lglobus_openssl_gcc32dbgpthr -lglobus_proxy_ssl_gcc32dbgpthr \
-lglobus_openssl_error_gcc32dbgpthr -lssl_gcc32dbgpthr \
-lcrypto_gcc32dbgpthr -lglobus_common_gcc32dbgpthr

GLOBUS_COMMON_THR_LIBS = -L/opt/globus/lib -L/opt/globus/lib \
-lglobus_common_gcc32dbgpthr

GLOBUS_SSL_THR_LIBS = -L/opt/globus/lib -L/opt/globus/lib \
-lssl_gcc32dbgpthr -lcrypto_gcc32dbgpthr

VOMS_CPP_LIBS = -L/opt/edg/lib -lvomsapi_gcc32dbgpthr

all: workload

workload: workload.o
$(CC) -o workload \
-L${EDG_LOCATION}/lib -ledg_wl_common_requestad \
–lpthread \
-ledg_wl_userinterface_client \
-ledg_wl_exceptions -ledg_wl_logging \
-ledg_wl_loggingpp \
-ledg_wl_globus_ftp_util -ledg_wl_util \
-ledg_wl_common_requestad \
-ledg_wl_jobid -ledg_wl_logger -ledg_wl_gsisocket_pp \
-ledg_wl_checkpointing -ledg_wl_ssl_helpers \
-ledg_wl_ssl_pthr_helpers \
$(VOMS_CPP_LIBS) \
$(CLASSAD_LIBS) $(EXPAT_LIBS) $(ARES_LIBS) \
$(BOOST_LIBS) \
$(GLOBUS_THR_LIBS) \
$(GLOBUS_COMMON_THR_LIBS) \
$(GLOBUS_SSL_THR_LIBS) \
workload.o

workload.o: workload.cpp
$(CC) -I ${EDG_LOCATION}/include \
-I/opt/classads/gcc-3.2.2/include -c workload.cpp

clean:
rm -rf workload workload.o

Makefile

EGEE Usage and Programming Introduction – October 6, 2004 - 36

Hands-on time!

• Create an executable that, using the
BrokerInfo APIsBrokerInfo APIs, lists all close SEs.
• Submit this job via a JDL file
• Retrive the output of the job
• Check that the output contains the
information you want

EGEE Usage and Programming Introduction – October 6, 2004 - 37

Summary

• We explained the main functionality of the
Workload Management System
• The JDL file describe a user job
• A set of commands allow the user to get
status information and retrieve relevant data
• APIs are available in C++ and Java for UI, LB
and BrokerInfo.
• We exercized the UI C++ APIs

