CMS ECAL Trigger Primitives: Tests of the boards

Outline

- Overview of the ECAL Trigger Primitives
- The Front-End board
 - Brief overview
 - XFEST: the eXtended Front-End System Test
- The Trigger Concentrator Card
 - Brief overview
 - TCC24: the prototype
 - Tests of the TCC24
 - Test bench for production
The ECAL Trigger Primitives

ECAL Trigger Primitive (TP) 40 MHz pipeline:
- 8 bits: Energy sums of a trigger tower + Bunch crossing assignment
- 1 bit: ECAL Fine Grain bit

Level 1 Trigger (dedicated hardware) (e, gamma, mu)

High Level Trigger (software)

40 MHz (1000 TB/s)

100 KHz

100 Hz (100 MB/s)
The ECAL Trigger Primitives and e/γ trigger

Electron:
1. \(E_T\) “Hit tower” + “Max tower” > threshold
2. Fine Grain (FG) veto: highest energy adjacent strip pair \(\approx\) large fraction of total (e.g. 90%)
3. H/E veto (e.g. 5%)

Candidate Energy:
- Max \(E_i\) of 4 Neighbors
- Hit + Max \(E_i >\) Threshold

Isolated Electron:
1. 8 neighbours towers with FG veto and H/E veto
2. 1 group of 5 “corner towers” with \(E_T <\) threshold
The ECAL Trigger Primitives Path

Regional Calo Trigger

On Detector Electronics

FE board: FENIX Strip+TCP

Off Detector Electronics

Trigger primitives: FE board + Trigger Concentrator Card

Encoded TP @ 40 MHz

Alarm signals (TTS)

L1A, clk, ctrl (TTC)

Trigger tower flags (TTF)

Data

VME 9U/6U OD crates
The Front End Board
• The FE board:
 • receives signals from a trigger tower (25 crystals of 5 VFE)
 • stores the data during the L1 latency
 • performs the Trigger Primitive calculations
 • formats and sends the data (via GOH: Giga Optolink Hybrid) to the DAQ (DCC board) when L1 accept signal.
 • sends the Trigger Primitives to the TCC @40 MHz (via GOH)

For details, see M. Gastal’s talk
XFEST: System Test for FE board production

- 3200 boards to be tested, 80/week until mid-2005
 1. Short tests: just after burn in to reject quickly dead boards (see M. Gastal’s talk)
 2. XFEST: Long tests (several hours) with lots of patterns

- 1 FE board: inputs 25 x 16 bits @ 40 MHz, outputs 2 x 800 Mbits/s ⇒ impossible to cover all patterns in a reasonable time

- Idea: inject same realistic inputs to several boards in parallel

Basic Synoptic:

EF Patterns generator

FE ref

FE

Comparator: TCC24

FEC

Drive & Control, Clock, Trigger

Data

Trigger

25 channels = 5VFE
XFEST: 1) Pattern Generator

\[\text{EF} = \text{FE prototype with FPGAs + FPGA reprogramming:} \]

- Emulates signals from VFE:
 - MGPA multigain
 - Random noise using LFSR (40 bits)
 - Variable signal amplitude using LFSR
- Allows loading of different signal shape
- Allows superposition of signals to mimic pile-up

Use a FE itself: \(\text{FE} \rightarrow \text{EF} \)
XFEST: 2) Mother board

Mother board:
- Connect EF to several FE
- Power supply

Realisation of a prototype:
- EF + 2 FE
- 24 layers
- PCB class 6, 4.8 mm

Final version:
- EF + 4 FE
- Strong constraints to avoid cross-talk and caution on timing of signals ⇒ 400 traces with characteristic impedance 50 Ω
- PCB class 6, 4.8mm, 48cm x 35cm
- Expected by october
XFEST: 3) Comparator: TCC24

In CMS:
- FE trigger \rightarrow TCC board
- FE Data \rightarrow DCC board

In XFEST:
- FE trigger+Data \rightarrow TCC board
 - Need reprogramming of TCC

\Rightarrow Use VME6U TCC24 prototype
 (see later on for details)

Reprogramming allows:
- Comparison of an input signal (1 FE) to other inputs
- If discrepancy, send channels in error to VME
Test bench controlled by a single PC running Linux:
VME crate via XDAQ/HAL environment, FEC (token ring), RS232, GUI.

- VME Crate
- TCC24
- Optical fibre from FE
- Optical Serial link (GOH) toward TCC
- TTCvi: clock, trigger (elec.)
- TTCex: elec. → opt.
- FEC (PCI) → Token Ring
- EF
- FE
- XFEST Mother board
The Trigger Concentrator Card
Brief overview of the Trigger Concentrator Card (TCC)

TCC Functions:

- Receives and deserializes the (optical) data from FE
- Finalises and encodes the Trigger Primitive (TP) using a non-linear scale for the total transverse energy
- Sends the encoded TP @ 40 MHz to the regional trigger through SLB (assuring time alignment between channels, see N. Almeida talk tomorrow)
- Stores the encoded TP during L1 latency and transmits it to DCC when L1A
- Computes TTF (= Trigger Tower Flags): Classifies trigger towers into high/medium/low interest and sends it to SRP when L1A

TCC in numbers (barrel version):

- double width VME 9U module managing 72 channels (=68 trigger towers + 4 not used) ⇒ 1 whole supermodule
- Basic Components: 6 NGKs (O/E receivers 12 channels), 72 Agilent (deserializer) and 8 FPGAs (6 Xilinx virtex2, 1 Xilinx virtex2 pro, 1 Altera) + 9 SLBs boards
- Latency must be ≤ 7 Clocks ⇒ imposes Agilent choice with protocol CIMT (2.5 clocks)
PCB 10 layers
Class 6 (120 µm)

NGK

Very high density:
use micro-Vias (120 µm drilled by laser) and BGA components

Agilent on both side

Rapid Signal traces
with characteristic impedance 50/100 Ω

Xilinx BGA

SLB connectors

3 layers shown
Aims: validate the design/implementation: Agilent deserializers, μ-vias, BGA

TCC24: VME 6U board, 24 channels 1/3 of final version

24 optical channels

Outputs for Logical Analyser (test purpose)

QPLL
Aims: validate the design/implementation: Agilent deserializers, μ-vias, BGA
TCC24: VME 6U board, 24 channels 1/3 of final version
Tests performed:
1. Power consumption measurement *(not shown in this talk)*
2. Latency measurements *(not shown in this talk)*: \(\leq 6 \) clock unit (< requirement)
3. Bit Error Rate measurements
 1. Direct measurement
 2. Indirect measurements:
 1. Eye diagram
 2. Jitter

Basic Synoptic:

```
TCC Tester board -> Optical Input patterns -> TCC 24
Pattern injector
```

```
Output patterns -> Logic Analyser
```

Tests of TCC24: TCCTester board

- **TCC Tester** = clone of the DCC Tester (see J. C. Da Silva talk for details)
- Able to transmit loaded pattern (in memories) @ 40 MHz

TCC Tester will be used for production test bench
Tests of TCC24: setup

- Fast Digital oscilloscope
- Logic Analyser
- TCC Tester
- TCC 24
- Optical fibres
Tests of TCC24: BER direct measurement

1. Test continuously 1 channel during 145h (6 days) @ 40 MHz with 0 error ⇒ BER < 3.10^{-15} ⇒ less than 1 error every 1'35" in CMS

2. Test 18 channels (/24) in parallel (same pattern injected in every channel): no error during 16h10' @ 40 MHz ⇒ BER < 2.10^{-14}
Tests of TCC24: BER and Eye diagram

Eye wide open

Can expect very low BER!
TCC Tests for production

First TCC barrel in October 2004, pre-production beginning of 2005,
42 boards (barrel version) to produce/test in second half of 2005

1. JTAG for boundary scan (up to SLB boards)
2. Built-in self test ⇒ check firmware:
 1. patterns auto generated by TCC
 2. Comparison to expected data in ROM
3. Short tests (fraction of seconds @40 MHz):
 1. Inject patterns (coming from testbeam, counter etc)
 2. Compare output to SystemC simulation (detailed hardware simulation, see http://www.systemc.org for details)
 ⇒ Uses Logic Analyser to read out/store output data

<table>
<thead>
<tr>
<th>TestBeam data</th>
<th>Basic patterns</th>
<th>Front-End emulator</th>
<th>Input patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCC Tester</td>
<td>TCC</td>
<td>Output patterns</td>
</tr>
<tr>
<td></td>
<td>TCC simulation</td>
<td></td>
<td>Expected patterns</td>
</tr>
<tr>
<td>SystemC</td>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
</tbody>
</table>

LECC2004, sept 14, 2004
P. Paganini 23
4. Long tests (several hours/days):
 1. Inject
 1. pseudo-random patterns auto generated by TCCTester
 2. patterns loaded in TCCTester memories
 2. Same patterns injected in all channels
 3. Compare outputs in TCC FPGA itself
 4. Readout/store data only if discrepancy via VME
• Trigger Primitive are generated using 2 boards:
 • Front End board
 • Trigger Concentrator Card

• Both boards need test bench to validate the up-coming production

• Coherent test benches have been developed using same approach (XDAQ/HAL environment for VME, SystemC etc...) and even same hardware if possible
Back-up slides
FENIX block diagram for Trigger Primitives

- Linearization from 12+2 to 18
- Strip or pseudo strip signal
- BCID FIR filter + Peak Finder
- Fine Grain Veto Bit
- Total E_T

Diagram:

- FENIX_STRIP
- FENIX_TCP

Link to:
- Fine Grain Veto Bit
Tests of TCC24: Latency 1.

Signal clean ⇒ Able to decode the word (8FB5 and 8FB5, LSB on left)

Master transition (CIMT): 1100

Latency: considering 2 c.u in FPGA + alignment ⇒ ≤ 6 clock unit (< requirement)