Nanometers, Gigahertz, and Femtoseconds

Recent Progress in Field Programmable Gate Arrays

Peter Alfke
Xilinx, Inc
peter.alfke@xilinx.com
FPGA State of the Art 2004

- **90-nanometer** manufacturing technology
- **Ten Gigahertz** serial I/O (SerDes) in silicon
- **0.07 femtosecond** asynchronous data capture window causes 1.5 ns metastable delay
Three Sections:

1. Bird’s Eye View of FPGA Technology
2. FPGAs in 2004: Virtex-4 Introduction
3. Special Problems and Solutions

all in 45 minutes…
A Bird’s Eye View...

Lower Cost

Moore’s Law is alive

- Smaller geometries and larger wafers
- and lower defect density (=higher yield)
- continue to achieve lower cost per function

LUT + flip-flop: $1.- in 1990, $0.002 in 2003

State-of-the-art: 90 nm on 300 mm wafers

- Spartan-3 uses this technology for lowest cost

Rapid price reductions, intense competition
A Bird’s Eye View…

More Logic and Better Features:
>100,000 LUTs & flip-flops
 >200 BlockRAMs, and same number 18 x 18 multipliers
1156 pins (balls) with >800 GP I/O
 50 I/O standards, incl. LVDs with internal termination
16 low-skew global clock lines
 Multiple clock management circuits
On-chip microprocessor(s) and Gbps transceivers

Gate count is really a meaningless metric
A Bird’s Eye View…

Higher Speed
Smaller and faster transistors
 90 nm technology, using 193 nm ultra-violet light
 Cu interconnect (instead of Al) was easily achieved
 Low-K dielectric progress is disappointing

System speed: up to 500 MHz,
 Mainly through smart interconnects, clock management,
 dedicated circuits, flexible I/O.
Integrated transceivers running at 10 Gigabits/sec
Speeding up general-purpose logic is getting difficult
A Bird’s Eye View…

Better tools

Back-End Place&Route and XST synthesis
- VHDL and Verilog becoming entry point

IP/Cores speed up design and verification

Embedded Software Development Tools
- support architectures and merge HW and SW

Domain-Specific Languages
- System Generator bridges the gap between Matlab/Simulink and FPGA circuit description

ASIC-size FPGAs need ASIC-like tools
ASICs Are Losing Ground
Mask set >$1M + design + verification + risk

ASICS are only for extreme designs:
Extreme volume, speed, size, low power

Source: IBM

Evolution

<table>
<thead>
<tr>
<th></th>
<th>1965</th>
<th>1980</th>
<th>1995</th>
<th>2010(?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Clock Rate (MHz)</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Min IC Geometries (µ)</td>
<td>-</td>
<td>5</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td># of IC Metal Layers</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>PC Board Trace Width (µ)</td>
<td>2000</td>
<td>500</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td># of PC-Board Layers</td>
<td>1-2</td>
<td>2-4</td>
<td>4-8</td>
<td>10-20</td>
</tr>
</tbody>
</table>

Every 5 years:
- System speed doubles, IC geometry shrinks 50%

Every 7-8 years:
- PC-board min trace width shrinks 50%
The Ever-Shrinking Circuitry

Number of LUTs + flip-flops + routing that fit on the cross section of a human hair

- 2000: 2 LUTs in Virtex-II (150 nm)
- 2002: 3 LUTs in Virtex-IIPro (130 nm)
- 2004: 4 LUTs in Virtex-4 (90 nm)
- 2005: 8 LUTs = one CLB in 65 nm

Moore’s law is alive and well in FPGAs
Middle-of-the-Road FPGAs

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>LUTs/Flip-flops</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>XC3042</td>
<td>288</td>
<td>LUTs + flip-flops</td>
</tr>
<tr>
<td>1994</td>
<td>XC4005</td>
<td>512</td>
<td>LUTs + flip-flops</td>
</tr>
<tr>
<td>1998</td>
<td>XC4013XL</td>
<td>1,152</td>
<td>LUTs + flip-flops</td>
</tr>
<tr>
<td>2000</td>
<td>XCV300</td>
<td>6,144</td>
<td>LUTs + flip-flops</td>
</tr>
<tr>
<td>2002</td>
<td>XC2V1000</td>
<td>10,240</td>
<td>LUTs + flip-flops</td>
</tr>
<tr>
<td>2004</td>
<td>XC2VP30</td>
<td>27,382</td>
<td>LUTs + flip-flops</td>
</tr>
<tr>
<td>2005</td>
<td>XC4V60-LX</td>
<td>53,248</td>
<td>LUTs + flip-flops</td>
</tr>
</tbody>
</table>

Same price for each: One day’s engineering salary
Thirteen Years of Progress

200x More Logic
plus memory, μP, DSP, MGT

40x Faster

50x Lower Power
per function x MHz

500x Lower Cost
per function
Moore Meets Einstein

- Speed Doubles Every 5 Years...
- ...but the speed of light never changes
Higher Leakage Current...

High Leakage current = static power consumption
 Was <100 microamps, now > 100 mA, even amps (!)
Caused by:
 • Gate leakage due to 16 Å gate thickness
 • Sub-threshold leakage current
 incomplete turn-off because threshold does not scale
Tyranny of numbers:
10 nA x 100 million transistors = 1 A
 evenly distributed, thus no reliability problem
Sub-100 nm is **not** ideal for portable designs
FPGAs in 2003

1000 to 80,000 LUTs and flip-flops,
millions of bits in dual-ported RAMs
Low-skew Global Clocks,
 Frequency synthesis, 50 ps phase control
18 Kbit BlockRAMs and 18 x 18 multipliers

FPGAs are not glue-logic anymore
FPGAs in 2003

- 1000 to 80,000 LUTs and flip-flops, millions of bits in dual-ported RAMs
- Low-skew Global Clocks,
 - Frequency synthesis, 50 ps phase control
- 18 Kbit BlockRAMs and 18 x 18 multipliers

FPGAs are not glue-logic anymore
FPGAs in 2003

300+ MHz system clock,
800 MHz I/O
3+ Gigabit transceivers
Embedded hard and soft microprocessors
Design security: Triple-DES encryption
VHDL/Verilog entry, synthesis, auto place and route

FPGAs are a compelling alternative to ASICs
Virtex-4 in September 2004

4th Generation Advanced Logic

ASMBL™ Column-Based Architecture

500 MHz SmartRAM™ BRAM/FIFO

0.6 - 11.1 Gbps RocketIO™

Integrated 450 MHz PowerPC Cores

Integrated Tri-Mode Ethernet MAC Cores

Integrated System Monitor

500 MHz Xesium™ Clocking

500 MHz Xtreme DSP™ Slice

0.6 - 1 Gbps LVDS

600 Mbps SE

SelectIO with ChipSync™ Technology:

- 1 Gbps LVDS
- 600 Mbps SE
New ASMBL™ Columnar Architecture

- Enables “Dial-In” Resource Allocation Mix
 - Logic, DSP, BRAM, I/O, MGT, DCM, PowerPC

- Made possible by Flip-Chip Packaging
 - I/O Columns Distributed throughout the Device
FPGA Innovation: Virtex-4

90 nm technology, triple-oxide, 1.2-V Vccint supply
General-purpose I/O up to 1 Gbps,
Vcco=1.5, 2.5, or 3.3-V
0.6 to 11.2 Gigabit/sec RocketI/O transceivers
Advanced Silicon Modular Block architecture
Three sub-families:
- **V4-LX** for logic-intense applications
- **V4-SX** for DSP-intensive applications
- **V4-FX** with PPC micros and multi-gigabit transceivers

Common architecture for diverse applications
FPGA Innovation: Virtex-4

- Higher Performance:
 - 500 MHz for all sub-blocks
- More Versatility
 - New innovative functions
- Higher Level of Integration
 - More LUTs, flip-flops, RAMs, multipliers
- Lower Cost
 - Smaller area = lower cost per function
- Lower Power per (Function times MHz)
FPGA Innovation: Virtex-4

Flip-chip packaging:
 lower pin-inductance, stiffer Vcc distribution
Lower power per function and MHz
 Triple-oxide gates, multiple thresholds,
 smaller size, lower Vcc, better design
Better clocking, less skew, more flexibility
Better configuration control, partial reconfiguration
Robust configuration cell, SEU tolerant like 130 nm

Details available now, after Virtex-4 official introduction
FPGA Innovation: Virtex-4

Improved I/O Flexibility and Performance
Supports >50 standards, on-chip termination
Source-synchronous and system-synchronous
Serializer/deserializer behind each pin
Programmable delay available for each pin
> 1Gbps SelectI/O on each pin
> 10 Gbps transceivers on dedicated pins (-FX family only)

Source-synchronous I/O improves performance
Serial I/O saves pins and pc-board area
FPGA Innovation: Virtex-4

Faster logic and memory
- 500+ MHz operation of all on-chip functions

32-bit arithmetic
- 48-bit adders and synchronous loadable counters

Up to 72-bit wide memory

4- to 36-bit wide FIFO control in each BlockRAM
- Operates with fully independent write and read clocks
- Reliable EMPTY and FULL outputs
- also ALMOST Empty and ALMOST Full

FIFOs need no fabric resources and no design expertise
Advanced Clocking

Proper clocking is extremely important for performance and reliability.
Most design need many global clock lines with minimal clock delay and clock skew.

Digital Clock Manager (DCM) provides:
- Four-phase outputs,
- Frequency multiplication and division
- Fine phase adjustment
Advanced I/O

>50 Different Output Standards
(strength, voltage, input threshold, etc)
multiple parallel output transistors
which are either fully on or fully off,
Nothing is ever analog, except in LVDS

Digitally Controlled Impedance = DCI
for series-termination of transmission-line drivers
Adjusts up/down strength to be = external resistor
One external pull-up and pull-down resistor per bank
V2Pro and Virtex-4 can “update-only-if-necessary”
System Synchronous

- System-Synchronous when the clock arrives “simultaneously” at all chips typically used below 200 MHz clock rate
- On-chip clock distribution DCM
 Zero clock delay controls set-up time, and avoids hold time requirements

The traditional design methodology
Source Synchronous

Each data bus has its own clock trace
typically used at 200 to 800 MHz clock rate
On-chip clock-distribution DCM
centers the clock in the data eye
Adds more unidirectional-only clock lines

The only way above 300 MHz
Serial Transceiver Technology

3.125 Gbps over each pair

Virtex-II Pro

32b @ 78 MHz

Virtex-II Pro

32b @ 78 MHz
Serial Transceiver Technology

Up to 11.1 Gbps over each pair

Virtex-4 Virtex-4

64b @ 168 MHz 64b @ 168 MHz
RocketIO™
Multi-Gigabit Transceiver

8 to 24 per device

622 Mb/s – 11.1 Gb/s

Programmable Features:
- 64b/66b or 8b/10b EnDec
- Comma Detect
- Rx and Tx FIFO
- Pre-Emphasis
- Receiver Equalization
- Output Swing
- On-Chip Termination
- Channel bonding
- AC & DC Coupling
Virtex-4 Capabilities

- Any type of design runs at >400 MHz
- Pipelining provides extra performance “for free”
- Synchronous is best, but 32 clock are available
- Gigabit serial saves pins and board area
- On-chip termination for board signal integrity
- I/O features support double-data rate operation and source-synchronous design

Details available now, after Virtex-4 official introduction
Virtex-4 Capabilities

- Popular functions are hard-wired
 for lower cost, higher performance, and ease-of-use:
 microprocessors, FIFOs, serial I/O, clock management, etc.
- Many pre-tested soft cores are available
 Some are free, some for a fee
- One-hot state machines are preferred
 But MicroBlaze and PicoBlaze may be better
- Massive parallelism enhances DSP,
 Up to 1024 fast two’s complement multipliers per chip,
 faster than dedicated DSP chips, but needs system-rethinking
2004 Challenges

Technology moves rapidly: 130, 90, 65 nm
Multiple Vcc, lower voltage - higher current
 Lower Vcc makes decoupling very critical
Moore’s law becomes more difficult to sustain
 Leakage current has increased significantly
 Triple-oxide transistors and clever design provide relief
Signal integrity on pc-boards is crucial
 “homebrew” prototyping would waste money and time

Use Standard Evaluation Boards Instead
AFX Basic Evaluation Boards
Low-Cost ML40X (~ $ 700)
ML46X- Memory Eval. Board
ChipScope Pro for Real-Time Debug

- Debugging usually dominates the design effort
 - needs access to chip-internal nodes and busses
 - practically impossible to dedicate extra pins and routing
 - don’t waste time “debugging the debugger”
- ChipScope Pro has internal virtual test headers
 - Small cores that act as internal logic state analyzers
- ChipScope Pro provides full visibility at speed
 - Read-out via JTAG, no extra pins needed

ChipScope Pro is the best tool for logic debugging
ChipScope Pro Available Today

ChipScope Pro on-chip debug solution
- 60-Day free evaluation version
- $695 full version
- www.xilinx.com/chipscope

Agilent FPGA Dynamic Probe
- Purchased separately from Agilent
- Acquisition $995 option for your 16900, 1690 or 1680 logic analyzer
- www.agilent.com/find/FPGA
1 Hz to 640 MHz Pulse Generator

- Direct Digital Synthesis in smallest Spartan3 chip
 - PicoBlaze for arithmetic and user interface
 - Special DCM frequency synthesis for <350 ps jitter
 - External PLL for jitter reduction to 100 picoseconds
- Max 640 MHz in 1 Hz steps, 1 ppm accuracy
- Three SMA outputs: LVDS plus single-ended
 - 1000 frequency values can be stored in EEPROM
- Small size, low cost, easy single-knob control

Early 2005, next generation will reach 5 GHz
640 MHz Pulse Generator
Two Problems and Solutions

Single-Event Upsets (SEUs)
radiation-induced soft errors

and

Extra Metastable Delay
unpredictable delay when set-up time is violated
Single-Event Upsets in Virtex-II

SEU = random **soft** error, directly or indirectly caused by solar radiation

Known problem at high altitude and space traditionally not a problem at sea level.

Many tests, papers, show ways to mitigate: readback, scrubbing, triple redundancy

Aerospace apps tolerate the cost/size penalty.

Creates FUD: Fear, Uncertainty & Doubt
Radiation Sources

- Galactic Cosmic Rays (GCRs)
- Solar Protons & Heavier Ions
- Trapped Particles: Protons, Electrons, Heavy Ions

Nikkei Science, Inc. of Japan, by K. Endo, Prof. Yohsuke Kamide
Traditional Test Methods

Vastly accelerated testing procedures
 bombarding operating FPGAs
 at Los Alamos and Sandia Labs
Many SEUs are detected and reported
But:

There is no agreed-upon conversion factor to “normal” terrestrial operation.

... there really was no meaningful data
Xilinx Large-Scale Test

4 boards with 100 XC2V6000s each
Running 24 hrs/day, internet-monitored readback and error logging 24 times/day
San Jose, (at sea level)
Albuquerque, NM (1500 m elevation)
White Mountain, CA (4000 m)
Mauna Kea, Hawaii, (4000 m)
What’s the Real MTBF?

Measured mean time between SEUs in XC2V6000 at sea level is 18 to 23 years (with 95% confidence.) But >90% of config. cells are always unused, The Real Mean Time Between Functional Failure therefore is 180 to 230 years for XC2V6000 or 1300 years MTBFF for XC2V1000

90-nm has been tested to be 15% better yet!
Metastability

Violating set-up time can cause **unknown delay**
A potential problem for **all** asynchronous circuits
Problem is statistical and cannot be "solved"
Xilinx published tests in 1988, 1996, and 2001
Modern CMOS flip-flops recover surprisingly fast

Metastability is now irrelevant in many cases
Metastability Capture Window

Tested on Virtex-IIPro
- 0.07 nanoseconds for a 1 ns delay clk-to-Q+set-up
- 0.07 femtoseconds for a 1.5 ns delay
- etc

A million times smaller
- for each additional 0.5 ns of delay

This parameter is independent of clock and data rates

Makes it easy to calculate MTBF in any system
Mean-Time-Between-Failure as a Function of Tolerable Delay

at 300 MHz clock rate and ~50 MHz data rate
FPGAs have become

cheaper
faster
bigger
more versatile
and easier to use

They are now the obvious first choice for the system designer

Thank you for your attention!
FPGAs in 2004