ATLAS / LAr
CALIBRATION SYSTEM

N. Massol, G. Daguin, N. Dumont-Dayot, I. Wingerter-Seez
LAPP Annecy

N. Seguin-Moreau, L. Serin, C. de La Taille
LAL Orsay
Motivations

Requirements

Description of the calibration board

Performances of last prototype

Production, tests and qualification
Motivations

✓ Liquid argon calorimeter: stability and uniformity of the ionisation signal

✓ Physics requirements

- Excellent energy resolution: to reconstruct energy of e⁻, γ and jets
- Large dynamic range: from 50 MeV to 3 TeV
- Charge not totally integrated: fast response (< 50 ns)
- Good radiation tolerance: high fluences during 10 years

✓ Energy resolution:

\[\sigma_E \frac{10\% + 300 \text{MeV}}{E \sqrt{E}} + 0.7\% \]

Non-uniformity sources

<table>
<thead>
<tr>
<th>Source</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber non-uniformity</td>
<td>0.2</td>
</tr>
<tr>
<td>Liquid gap non-uniformity</td>
<td>0.15</td>
</tr>
<tr>
<td>Residual φ-modulation</td>
<td>0.2</td>
</tr>
<tr>
<td>Electronics read-out</td>
<td>0.25</td>
</tr>
<tr>
<td>+ other effects …</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>< 0.7</td>
</tr>
</tbody>
</table>

Main contribution!

Linked to our ability to calibrate the 200000 channels with a good accuracy
The Calibration board in the electronics chain

- Designed to deliver a uniform, stable and linear signal with a shape similar to the calorimeter ionization current signal

\[E = \sum a_i (S_i - PED) \]
\[E \tau = \sum b_i (S_i - PED) \]
\[\chi^2 = \sum (S_i - PED - E g_i)^2 \]
Requirements

- Goal: inject a current pulse as close as possible as the physics pulse
- Output: 128 analog channels
- Rise time: < 1 ns
- Decay Time: 450 ns
- Dynamic range: 16 bits (2 \(\mu \)A to 200 mA)
- Integral non linearity: < 0.1%
- Uniformity between channels: < 0.25%
- Timing between physics and calibration pulse: ±1 ns
- Radiation hardness:
 - 50 Gy, \(1.6 \times 10^{12} \) Neutrons/cm\(^2\) in 10 years
 - DMILL chips (active elements) qualified up to 500 Gy, \(1.6 \times 10^{13} \) Neutrons/cm\(^2\) to include safety factors
- Jitter introduced by the board: better than the one induced by the arrival time of the particles \(\rightarrow < 150 \) ps
Principle of the calibration

1. Selection of a calibration value from a 16 bits DAC
2. Low offset opamp to generate a precise DC current (Idc)
3. Idc flowing in inductor L
4. Command pulse diverting Idc to ground
5. Second fast transistor then cutted off
6. Fast pulse produced by the magnetic energy stored in the inductor

\[
I_{cal} = Idc \frac{R_0/2}{R_{inj}} e^{-2R_0t/L}
\]
Board description

✓ 128 channels per board

✓ Analog part:
 • Challenge to obtain a uniform distribution (in time and in amplitude) with a very high density of components
 • Difficult routing to minimize the coupling between channels

✓ Digital part:
 • Receives the 40MHz clock from the TTC (Timing Trigger Control)
 • Decode the calibration command
 • Manages external communications via a dedicated protocol (I2C):
 – Enable desired channels (32 bits output registers)
 – Load DAC value (16 bits output register)
 – Delay calibration command (between 0 and 24 ns, step=1 ns)
 – Control the voltage regulators
 – Monitor the temperature
Digital part

SPAC: I2C frame

TTCRx: ATLAS TTC commands

CALOGIC: Generate calibration command and reset signals

CALOGIC Reg0-3: 32 bits R/W register to enable the 128 ch.

DAC REG

REG0

REG1

TTC decode

REG2

REG3

Delay0

Delay1

16 bits DAC

16 Pulser

ANALOG PART

16 bits R/W register to load the DAC value

DELAY: 0-24 ns, step 1 ns

Pulsers

Pulsers

Pulsers

Pulsers

Pulsers

Pulsers

Pulsers

Pulsers

Clock 40

I2C

44

32

32

32

32

16

32

32

32

16
View of the calibration board

- 128 Opamps & switch
- Outputs CH0-63
- DAC
- Outputs CH64-127
- Calolgc
- TTCRx
- Delay (bottom)
- SPAC3
1 DAC / board distributed to all channels

DAC linearity performed with a precise voltmeter (after 30 mn warming up)

3 shaper ranges
 - High gain: 0 – 655 (0-10 mV)
 - Medium gain: 0 – 6553 (0-100 mV)
 - Low gain: 0 – 65535 (0-1 V)

Residuals:
 - HG: < ± 1 µV
 - MG: < ± 10 µV
 - LG: < ± 50 µV

Non-linearity: < 0.01%, far better than the requirement (0.1%)

Fit parameters of DAC linearity:
 - P0: due to the distribution opamp offset
 - P1: 1 LSB = 15.26 µV
DC linearity and uniformity

✓ DC output current linearity
 - residuals < 0.01%
 - Similar pattern as the DAC residuals
 - DC output current independent of the number of channels ON

✓ DC current uniformity on 128 channels
 - DAC = 655 (full scale HG):
 - non uniformity dominated by the opamps offsets
 - Without offset correction: 0.139%
 - With offset correction: 0.061%
 - DAC = 6553 (full scale MG):
 - non uniformity dominated by the accuracy on the discrete components
 - dispersion = 0.069%

<table>
<thead>
<tr>
<th>IDC/DAC HG</th>
<th>P0</th>
<th>P1</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 channel</td>
<td>1.616 µA</td>
<td>3.0075 µA/DAC</td>
<td>63 ppm</td>
</tr>
<tr>
<td>128 channels</td>
<td>1.678 µA</td>
<td>3.0062 µA/DAC</td>
<td>49 ppm</td>
</tr>
</tbody>
</table>

DC current uniformity for 2 gains at full scale
Dynamic measurements

Hardware used to do these measurements:

- Automatic measurement on the 128 channels with a multiplexor
- Shaper CR-RC2 with a time constant of 50 ns
- Readout system: 12 bits ADC
- Amplitude measurement at the signal peak averaged on 100 triggers

Dispersion measurement of the 128 channels multiplexor
Pulse Linearity

✓ Integral non linearity:
 • < 0.1% for all gains
 • Dynamic linearity worse by about x10 compared to DC linearity
 • Visible effect of the non linearity of the readout

✓ Better than the 0.1% requirements
Pulse uniformity

✓ Uniformity at DAC=10000:
 • RMS: 0.095%
 • DC uniformity: 0.07%
 • Possible contribution from output lines and inductors

✓ Same uniformity obtained whatever the DAC setting, due to the good linearity

✓ x2 better than the requirements (0.25%)
Timing measurements

Two ways to set the delay between the LV1A (trigger) and the Calibration pulse:

- with the 2 PHOS4_RH delays (0-24 ns, 1 ns step)
 - One PHOS4-RH delay line drives 16 calibration channels
 - Used to compensate for the cables lengths across the calorimeter
- with the TTCrx fine delay (0-24 ns, 104 ps step)
 - One unique delay value for the 128 channels
 - Used to scan the calibration pulse during special runs

Measurements procedure

- Characterization of the timing of the full calibration chain
- Accuracy measurement with an oscilloscope 16GS/s, 1GHz
- Recording histograms of the delay between the 40 MHz clock and the outputs of the board channels
- Intercept, slope and averaged jitter extracted from linear fit
Linearity with the PHOS4-RH delay

✓ Chip study:
 • Dependence of the performances with temperature, supply voltage, ...
 • Production tested in a monitored environment
 • Chips selected on jitter and sorted on the step value

✓ Timing linearity:
 • slope: not exactly = 1
 • depends on the delay line, the chip and the temperature
 • residuals: <70 ps

✓ Jitter:
 • average: 75 ps
 • stable whatever the delay value due to the chip selection
 • operation point must be below a temperature threshold: !! cooling !!
Linearity with the TTCrx fine delay

✓ Timing linearity:
 • slope: 1.00
 • residuals: ±250 ps (in agreement with the TTCrx datasheet)

✓ Jitter:
 • average: 75 ps
 • stable whatever the delay value

✓ Jitter induced by the calibration board should be below the one induced by the arrival time of the particles (150ps)
Timing uniformity

- Timing response measurement of all channels (scanning the delay values of the PHOS4-RH)
- Intercept:
 - Dispersion inside a row of 8 opamps: one calibration line distributes one row of 8 opamps
 - Parabolic behavior by group of 64 channels due to the different output lengths at the connector level
 - Dispersion by group of 16 channels due to the offset of each PHOS4RH output: little effect submerged by the parabolic behavior

![Graph showing time intercept uniformity versus channel number]

Different output lengths

1 calibration line / row

13-17 September 2004
N. Massol, 10th workshop on electronics for LHC
Timing uniformity (2)

✓ Jitter:
 - Stable whatever the calibration channels, around 75 ps

✓ Slope:
 - Constant by group of 16 channels: one PHOS4-RH line drives 16 calibration channels
 - Dispersion between group of 16 channels: intrinsic characteristics of the PHOS4-RH delay chips
 - Slope value between 0.93 and 1.09: need to be corrected in ATLAS (values stored in a database)
 - Used for global timing adjusting: no need of excellent accuracy!
Boards qualification procedure

✓ Tests in industry:
 • Visual inspection of the board
 • Measurement of the power supply consumption
 • Burn in test

✓ Qualification in laboratory:
 • Identification of the whole chips on the board (traceability)
 • Board powered up and current measured and compared to measurement done before burn-in at assembly firm
 • Digital part tested
 • Parameters tuned: voltage regulator, DAC scale
 • Opamp offsets measured
 • Inductor resistance measured
 • Linearity of all channels and uniformity over the 3 gains measured
 • Decay time constant of the exponential calibration measured
 • Delay chips characterized: offset, slope, jitter
 • TTCrx fine delay monitored
Board qualification in labs: bench setup

- Programmable Power Supply
- TTC signals
- SPAC bus
- Trigger
- DC signal
- PCIbus
- Clock
- GPIB
- Oscilloscope
- Caliberm KETHELY
- Calibration boards
- Production testbench
- Software based on LargOnline + Labview User Interface
Board qualification in labs: bench setup (2)

SPAC
TTCvx
TTCvi
Digitizing board

Mux board
attenuator
shaper
Conclusion

✅ History:
 - 10 non radhard boards produced in 98: 5 years successful operation in beam tests
 - Active elements designed in DMILL in 99-01: DAC, pulser, control logic, delay
 - 3 versions of radiation hard boards produced in 02-03
 - Last prototype in operation at the CERN combined run this summer

✅ Components status
 - DAC: chips produced, measurements in progress
 - OP AMPs: chips produced, tested and selection in progress
 - CALLOGIC: chips produced, tested and sorted
 - Delays: chips produced, tested and sorted

✅ Pre-series of 4 calibration boards ready for tests of final ATLAS calorimeter electronics next october

✅ Production of 130 boards for ATLAS: beginning 2005

✅ Installation on the calorimeter at CERN: spring 2005