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Abstract 
We describe a track segment recognition scheme called 

the Tiny Triplet Finder (TTF) that involves the grouping of 
three hits satisfying a constraint, for example, forming a 
straight line.  The TTF performs this )( 3nO function in 

)(nO time.  The logic element usage in FPGA 
implementations of typical track segment recognition 
functions are )( 2NO , where N is the number of bins in the 
coordinate considered, while that for the TTF is 

))log(( NNO , which is significantly smaller for large N .
The TTF is also suitable for software implementation and 
many other pattern recognition problems. 

I. INTRODUCTION 
Track segment finding is an essential process in many 

trigger systems for high-energy physics experiments.  In the 
Fermilab BTeV [1], trigger system, for example, we need to 
identify track segments from the coordinates of pixel detector 
hits from three adjacent detector planes forming a straight-line 
segment in the non-bend view.  For a given track segment, the 
following relationship holds: 

BCA uuu 2=+

where Au , Bu and Cu are the hit coordinates on planes A, B 
and C in the non-bend view.  Such segments consisting of 
three hits are referred to as “triplets” (See Fig. 1, 2) [3].  

Straightforward software implementation of such a 
function would require )( 3nO execution time, where n is 
number of hits per plane, in order to examine all possible 
combinations of three hits using three layers of nested loop.  
In a hardware implementation, this execution time can be 
reduced to )(nO proportional to the time required to fetch 
the data.  This is accomplished by “unrolling” two layers of 
loops, consuming a significant portion of the silicon resources 
in the device.  The number of logic elements needed in many 
typical triplet finding implementations is )( 2NO where N
is the number of bins that each plane is divided into.   
 

(a) 

(b) 
Figure 1: Triplet finding. 

In this article, we describe a new algorithm that performs 
the triplet finding function, which we will refer to as the Tiny 
Triplet Finder (TTF). We also describe a sample hardware 
implementation of the TTF using the low cost Altera Cyclone 
[7] family of FPGA devices.  Logic element usage in this 
implementation is ))log(( NNO which is significantly 

smaller than )( 2NO when N is large.     

II. PRINCIPLE 
Consider the three equally spaced detector planes in the 

non-bend view as shown in Fig. 2.  We first divide the two 
outer detector planes, Plane_A and Plane_C, into N bins 
( 64=N in this example), choosing a bin as a unit of the 



coordinate in the non-bend view, and rounding off to integer 
units. 

Figure 2: Tiny Triplet Finder. 

In general, there exist 2N possible track combinations, or 
“roads” in this configuration.  A “road” is defined here as a 
line segment passing through one of the N bins in each of 
Plane_A and Plane_C.  Directly implementing all possible 
combinations using either logic elements or content 
addressable memories (CAMs) would require a huge amount 
of silicon resources (64 X 64 = 4096 in this example). 

In the Tiny Triplet Finder, two register arrays, BitReg_A 
and BitReg_C, are used to record the hits in the detector 
planes.  When a hit coordinate from a detector plane is input, 
one of the 64 bits in the register array, corresponding to its 
position, is set.  Once all hits in the Plane_A and Plane_C are 
recorded, the algorithm cycles through the hits from Plane_B 
one at a time.  In the special case when the hit is at the mid-
point of Plane_B (see the top of Fig. 2), there will be 64 
possible track combinations or roads.  Each possibility is 
checked through bit-wise coincident logic between the bit 
patterns recorded in BitReg_A and BitReg_C.  If a pair of 
corresponding bits in BitReg_A and BitReg_C are both set, 
e.g., (0, 63), (1, 62) or (2, 61), etc., the bit-wise logic will 
output the pattern of the matching pair(s) corresponding to a 
possible track segment passing through the hits in Plane_A, 
Plane_C and Plane_B. The bit-wise coincident logic is 
primarily a bit-wise AND of the patterns in the two registers.  
In a real implementation, a bit-wise OR with the neighbouring 
bits in one pattern may first be performed to cover boundaries. 

For hits that are not at the mid-point of Plane_B, the bit-
wise coincident logic is identical, except that the positions of 
the bit patterns representing the hits on Plane_A and Plane_C 
relative to each other are shifted by an amount determined 

from the coordinate of the hit on Plane_B (see the middle and 
bottom configurations of Fig. 2).  Rewriting the constraint for 
the triplet in the following form: 

BCA uuu 2+−=

we see that the relative shift between the bit patterns is Bu2 .
We also see that the orders of the two bit patterns relative to 
each other should be reversed due to the negative sign 
between Au and Cu .

We should point out that hits from different tracks or noise 
hits can satisfy the coincident logic resulting in fake tracks.  
The simplest way to deal with these is to encode and output 
all of them performing arbitration at a later stage.  The user 
can also use priority encoder to choose one depending on the 
physics requirement of the experiment. 

In the Tiny Triplet Finder, only N (64) combinations are 
implemented in the bit-wise coincident logic, rather than 2N
(64 X 64=4096) combinations.  Taking advantage of 
symmetry, we get all possible combinations by shifting the bit 
pattern. 

In the time domain, the total execution time is taken up by 
the following processes: 

1. Setting the bit patterns BitReg_A and BitReg_C. 
2. Looping over hits in Plane_B, shifting the bit 

pattern in BitReg_A, performing the bit-wise 
coincident and decoding matching pair(s) found. 

Although these are essentially )(nO processes, there will be 
a small non-linear contribution when more than one pair is 
found by the bit-wise coincident logic. 

Ignoring the small non-linear contributions, we see that 
the TTF unrolls two layers of loops so that an )( 3nO
process can now be executed in )(nO time.   

This is accomplished through the use of the bit-wise 
coincident logic that simultaneously finds all matching hits on 
Plane_A and Plane_C for each hit on Plane_B in a single 
operation, making the process time proportional to the number 
of hits n on Plane_B.   

III. FPGA IMPLEMENTATIONS OF THE TINY 
TRIPLET FINDER 

The block diagram of the Tiny Triplet Finder implemented 
in a FPGA device is shown in Fig. 3. 



Figure 3: Block diagram of Tiny Triplet Finder. 

A. Bit Array Filling 
As the hit data from Plane_A and Plane_C are fetched 

from input FIFO’s, a bit corresponding to each hit is set in the 
BitReg blocks.  The resulting hit patterns are presented at the 
output ports on buses AQ and CQ.  Meanwhile, the full hit 
data are stored into memory buffers called “Hash Sorters” [5] 
for fast retrieval later.  For simplicity, one may think of the 
Hash Sorters as memory areas that are each divided into 64 
bins.  When a hit sets a bit in the BitReg register array, the 
full hit data are written into the corresponding bin in the Hash 
Sorter. 

B. Looping B Hits and Shifting Bit Pattern 
After all the hits from Plane_A and Plane_C have been 

written into the Hash Sorters, the hits from Plane_B can now 
be fetched from the input FIFO’s.  The coordinates of the hits 
from Plane_B are used to determine the relative shift distance 
between the two bit patterns AQ and CQ.  The shifter shifts 
the bit pattern AQ by this amount and presents the shifted 
pattern at port A2Q.  The full hit data from Plane_B are also 
stored, for later retrieval, in a buffer which can either be a 
hash sorter or a regular output FIFO.    

The shifter is implemented in a two-stage pipeline to 
increase operation frequency. Although the shifter requires a 
relatively large amount of logic elements ( ))log(( NNO ) in 
comparison to the other blocks in this design, it is still much 
smaller than typical implementations where )( 2NO logic 
elements are needed. 

 

C. Bit-wise Coincident Logic 
The bit pattern CQ and the shifted pattern of AQ, A2Q, 

are sent to the “BitLogic” block in which the bit-wise 
coincident logic is performed.  The coincident logic is 
essentially a bit-wise AND.  The OR logic among the 
neighbouring bits in A2Q is included to cover the boundaries.  

The detailed logic is P[k]=CQ[k]& (A2Q[k] + A2Q[k-1]), 
where k is the bit index. 

Any non-zero bit in the resulting bit pattern P indicates a 
found triplet.  The location of this bit represents the 
coordinate of the Plane_C hit belonging to the triplet.  The 
coordinate of the Plane_A hit can be derived from this 
location and the distance of shift.   

D. Priority Sequence Encoder 
The locations of the non-zero bits are encoded in the 

“Priority Sequence Encoder” block which can accommodate 
situations with more than one triplet.  When there is only one 
non-zero hit in the bit pattern P, the encoder outputs the 
location of the bit.  If there are two or more non-zero bits, the 
encoder will insert a wait signal to halt earlier pipeline stages, 
allowing the locations of all the non-zero bits to be reported 
sequentially. 

This block is also implemented as a pipeline.  Although it 
takes 6-clock cycles to encode the non-zero bit(s) in P, the 
block accepts one P pattern each clock cycle, as long as the 
wait signal is not inserted. 

IV. TEST DESIGNS AND SILICON RESOURCE 
USAGE 

We have test compiled the Tiny Triplet Finder with N=64 
and N=128 bins in an Altera EP1C4 Cyclone device [7]. 

The full simulation of the Tiny Triplet Finder is shown in 
Fig. 4.  The simulation uses hit coordinates given in Fig. 1 as 
an example.  The coordinates for Plane_B are multiplied by 2 
to obtain the shift distance.  All 4 real triplets in this example 
are found plus a fake one which also satisfies the triplet 
condition KA + KC = KB and is represented by the dashed 
line in Fig. 1 with hits (27, 15, 3).  

Figure 4: Full Simulation of the Tiny Triplet Finder. 

The outputs of the Priority Sequence Encoder, KA, KB, 
and KC, are the bin numbers where the original hit data are 
stored in the Hash Sorters (or FIFO for Plane_B hits).  These 
numbers are used as addresses to read out the hit data in the 
corresponding bins to send to later stages for further 
processing. 

In case there is more than one hit stored in a bin, the Hash 
Sorter will output all the hits in the bin so that later stages can 
make better choice.  In this case, the pipeline in earlier stages 
will be halted, allowing multiple hits to be read out. 



Another interesting point shown in this example is that we 
have found a triplet (5,8,3) corresponding to the input (4,8,3).  
One of the input coordinates is off by 1 bin due to a boundary 
effect and/or a round-off error.  Our bit-wise coincident logic 
covers this kind of difference.  To trace back the original hits 
in the Plane_A at bin 4, the hash sorter will check both bin 
KA and KA-1, i.e., both bin 5 and bin 4 in this example. 

The compilation results are shown in Table 1 for all 
functional blocks shown within the dashed box in Fig. 3.  As 
we can see, the Tiny Triplet Finder can easily be 
accommodated in currently available middle-sized FPGA’s. 

Table 1: Silicon Usage of Triplet Finder Implementations 

Devices: 
Price: (04/2004) 

EP1C4 
$35.90 

EP2A40 
$1200 

Logic Cells 
(4000) 

Logic 
Cells 

(30,855) 

Embedded 
System Blocks 

(160) 
TTF (64 bits) 944 (23%) 944 (3%) - 
TTF (128 bits) 1681 (42%) 1681 (5%) - 

CAM using ESB 
(64 bits) 

Not fit  128 (80%) 

Hough Trans. 
(64 bits) 

Not fit 16384 
(53%) 

 

The resource usages for two other typical implementations 
are also shown for comparison.  The first one uses Content 
Addressable Memories (CAM) which can be implemented 
fairly efficiently with Altera Embedded System Blocks 
(ESB's) [8].  For this case, we calculated silicon usage 
assuming 64 X 64 =4096 roads without considering boundary 
effects and including other supporting logic. 

The second other implementation uses the Hough 
transform scheme [6].  The number shown includes only the 
2-D histogram, assuming each bin can be implemented with 4 
logic cells.  Decoder and other supporting logic are not 
included. 

Since these two other implementations do not fit in the 
EP1C4 device, we picked an EP2A40 APEX II device [8], 
which is 7 times larger, to accommodate them. 

Furthermore, as the bin number increases from 64 to 128, 
the logic cell usage of the Tiny Triplet Finder will increase 
only by about a factor of 2 while that for the other two 
implementations will increase by a factor of 4. 

V. CONFIGURATIONS WITH UNEQUALLY SPACED 
DETECTOR PLANES 

The Tiny Triplet Finder may also be used in triplet finding 
problems with non-uniformly spaced detector planes.   

Let the distance between the planes A and B be 1d and 

that between B and C be 2d , as shown in Fig. 5. 

Figure 5: Detector configuration with unequally spaced planes. 

For a given track segment, the following relationship 
exists: 
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where Au , Bu and Cu are the hit coordinates on planes A, B 
and C.  We can define: 
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where AK , CK and BK are integers after eliminating 
fractional bits. We then have: 

BCA KKK =+

This shows that the Tiny Triplet Finder can be applied for 
arbitrarily spaced detector planes.  The units of bins for plane 
A and C are as defined above.  The relative shift between the 
two bit patterns is still BK .

VI. CONFIGURATIONS WITH MORE THAN THREE 
PLANES 

The method used in the Tiny Triplet Finder is not 
restricted to three planes.  By introducing more planes, 
additional constraints are added.  The additional hit 
information can be also used to handle situations with missing 
hits due to detector inefficiencies. 

Consider a 5-plane example as shown in Fig. 6. 

Figure 6: Detector configuration with unequally spaced planes. 

We assume the planes in this example are uniformly 
spaced for simplicity.  For arbitrary spacing, the method 
shown in the previous section can be applied. 



For a given track segment, the following constraints can 
be written: 

BCA uuu 2+−=

BCAA uuu
2
3

2
1

+−=

BCCC uuu
2
1

2
1

+−=−

Again, the hit coordinates on planes AA, A, B, C and CC in 
the non-bend view are connected through these constraints. 

The equations above provide the bin size and shift 
distance (relative to plane C, an arbitrary choice) for each 
plane.  The bin sizes for planes AA and CC are twice those 
for A and C.  The bin order for plane C and CC are reversed 
relative to AA and A.  The shift distances for plane A, AA 
and CC are 2, 3/2 and 1/2 of the hit coordinate on B. 

The bit-wise coincident logic can be implemented in the 
following 3 different ways: 

• The highest level of constraint is a 4-fold bit-wise 
AND.  This logic is best on eliminating fake triplets. 
However, the required efficiency of the detector must 
be very high. 

• Another possible logic is 3-out-of-4 bit-wise 
majority.  This allows 1 out of the 4 hits to be 
missing due to detector inefficiency.  Two out of 
three constraints are used resulting in a lower fake 
triplet rate than the 3-plane situation. 

• Using 2-out-of-4 bit-wise majority logic will produce 
as many fake triplets as in the 3-plane situation 
(perhaps even more).  However, this allows 2 out of 
4 hits missing, resulting in the highest triplet finding 
efficiency. 

In practice, the second choice is a reasonable one since it 
maintains a good balance between the ability to deal with 
inefficiencies and the ability to reject fake triplets. 

VII. DISCUSSIONS 
We have described an FPGA implementation of the Tiny 

Triplet Finder.  Since the Tiny Triplet Finder algorithm uses 
no special logic operations other than shift and bit-wise 
AND/OR, it is also suitable for software implementation.  In 
most CPU or DSP processors, the execution time will be 
reduced from )( 3nO to )(nO . In addition to track segment 
finding, the TTF algorithm may also be used in hit recognition 
problems in wire chambers, time of flight counters, and 
GEM/MICROMEGAS detectors.  We will discuss these 
applications in separate documents. 
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