
Tiny Triplet Finder (TTF) – A track segment recognition scheme and its FPGA
implementation developed in the BTeV level 1 trigger system

Jinyuan Wu, Z. Shi, M. Wang, H. Garcia and E. Gottschalk

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
jywu168@fnal.gov

Abstract
We describe a track segment recognition scheme called

the Tiny Triplet Finder (TTF) that involves the grouping of
three hits satisfying a constraint, for example, forming a
straight line. The TTF performs this)(3nO function in

)(nO time. The logic element usage in FPGA
implementations of typical track segment recognition
functions are)(2NO , where N is the number of bins in the
coordinate considered, while that for the TTF is

))log((NNO , which is significantly smaller for large N .
The TTF is also suitable for software implementation and
many other pattern recognition problems.

I. INTRODUCTION
Track segment finding is an essential process in many

trigger systems for high-energy physics experiments. In the
Fermilab BTeV [1], trigger system, for example, we need to
identify track segments from the coordinates of pixel detector
hits from three adjacent detector planes forming a straight-line
segment in the non-bend view. For a given track segment, the
following relationship holds:

BCA uuu 2=+

where Au , Bu and Cu are the hit coordinates on planes A, B
and C in the non-bend view. Such segments consisting of
three hits are referred to as “triplets” (See Fig. 1, 2) [3].

Straightforward software implementation of such a
function would require)(3nO execution time, where n is
number of hits per plane, in order to examine all possible
combinations of three hits using three layers of nested loop.
In a hardware implementation, this execution time can be
reduced to)(nO proportional to the time required to fetch
the data. This is accomplished by “unrolling” two layers of
loops, consuming a significant portion of the silicon resources
in the device. The number of logic elements needed in many
typical triplet finding implementations is)(2NO where N
is the number of bins that each plane is divided into.

(a)

(b)
Figure 1: Triplet finding.

In this article, we describe a new algorithm that performs
the triplet finding function, which we will refer to as the Tiny
Triplet Finder (TTF). We also describe a sample hardware
implementation of the TTF using the low cost Altera Cyclone
[7] family of FPGA devices. Logic element usage in this
implementation is))log((NNO which is significantly

smaller than)(2NO when N is large.

II. PRINCIPLE
Consider the three equally spaced detector planes in the

non-bend view as shown in Fig. 2. We first divide the two
outer detector planes, Plane_A and Plane_C, into N bins
(64=N in this example), choosing a bin as a unit of the

coordinate in the non-bend view, and rounding off to integer
units.

Figure 2: Tiny Triplet Finder.

In general, there exist 2N possible track combinations, or
“roads” in this configuration. A “road” is defined here as a
line segment passing through one of the N bins in each of
Plane_A and Plane_C. Directly implementing all possible
combinations using either logic elements or content
addressable memories (CAMs) would require a huge amount
of silicon resources (64 X 64 = 4096 in this example).

In the Tiny Triplet Finder, two register arrays, BitReg_A
and BitReg_C, are used to record the hits in the detector
planes. When a hit coordinate from a detector plane is input,
one of the 64 bits in the register array, corresponding to its
position, is set. Once all hits in the Plane_A and Plane_C are
recorded, the algorithm cycles through the hits from Plane_B
one at a time. In the special case when the hit is at the mid-
point of Plane_B (see the top of Fig. 2), there will be 64
possible track combinations or roads. Each possibility is
checked through bit-wise coincident logic between the bit
patterns recorded in BitReg_A and BitReg_C. If a pair of
corresponding bits in BitReg_A and BitReg_C are both set,
e.g., (0, 63), (1, 62) or (2, 61), etc., the bit-wise logic will
output the pattern of the matching pair(s) corresponding to a
possible track segment passing through the hits in Plane_A,
Plane_C and Plane_B. The bit-wise coincident logic is
primarily a bit-wise AND of the patterns in the two registers.
In a real implementation, a bit-wise OR with the neighbouring
bits in one pattern may first be performed to cover boundaries.

For hits that are not at the mid-point of Plane_B, the bit-
wise coincident logic is identical, except that the positions of
the bit patterns representing the hits on Plane_A and Plane_C
relative to each other are shifted by an amount determined

from the coordinate of the hit on Plane_B (see the middle and
bottom configurations of Fig. 2). Rewriting the constraint for
the triplet in the following form:

BCA uuu 2+−=

we see that the relative shift between the bit patterns is Bu2 .
We also see that the orders of the two bit patterns relative to
each other should be reversed due to the negative sign
between Au and Cu .

We should point out that hits from different tracks or noise
hits can satisfy the coincident logic resulting in fake tracks.
The simplest way to deal with these is to encode and output
all of them performing arbitration at a later stage. The user
can also use priority encoder to choose one depending on the
physics requirement of the experiment.

In the Tiny Triplet Finder, only N (64) combinations are
implemented in the bit-wise coincident logic, rather than 2N
(64 X 64=4096) combinations. Taking advantage of
symmetry, we get all possible combinations by shifting the bit
pattern.

In the time domain, the total execution time is taken up by
the following processes:

1. Setting the bit patterns BitReg_A and BitReg_C.
2. Looping over hits in Plane_B, shifting the bit

pattern in BitReg_A, performing the bit-wise
coincident and decoding matching pair(s) found.

Although these are essentially)(nO processes, there will be
a small non-linear contribution when more than one pair is
found by the bit-wise coincident logic.

Ignoring the small non-linear contributions, we see that
the TTF unrolls two layers of loops so that an)(3nO
process can now be executed in)(nO time.

This is accomplished through the use of the bit-wise
coincident logic that simultaneously finds all matching hits on
Plane_A and Plane_C for each hit on Plane_B in a single
operation, making the process time proportional to the number
of hits n on Plane_B.

III. FPGA IMPLEMENTATIONS OF THE TINY
TRIPLET FINDER

The block diagram of the Tiny Triplet Finder implemented
in a FPGA device is shown in Fig. 3.

Figure 3: Block diagram of Tiny Triplet Finder.

A. Bit Array Filling
As the hit data from Plane_A and Plane_C are fetched

from input FIFO’s, a bit corresponding to each hit is set in the
BitReg blocks. The resulting hit patterns are presented at the
output ports on buses AQ and CQ. Meanwhile, the full hit
data are stored into memory buffers called “Hash Sorters” [5]
for fast retrieval later. For simplicity, one may think of the
Hash Sorters as memory areas that are each divided into 64
bins. When a hit sets a bit in the BitReg register array, the
full hit data are written into the corresponding bin in the Hash
Sorter.

B. Looping B Hits and Shifting Bit Pattern
After all the hits from Plane_A and Plane_C have been

written into the Hash Sorters, the hits from Plane_B can now
be fetched from the input FIFO’s. The coordinates of the hits
from Plane_B are used to determine the relative shift distance
between the two bit patterns AQ and CQ. The shifter shifts
the bit pattern AQ by this amount and presents the shifted
pattern at port A2Q. The full hit data from Plane_B are also
stored, for later retrieval, in a buffer which can either be a
hash sorter or a regular output FIFO.

The shifter is implemented in a two-stage pipeline to
increase operation frequency. Although the shifter requires a
relatively large amount of logic elements ())log((NNO) in
comparison to the other blocks in this design, it is still much
smaller than typical implementations where)(2NO logic
elements are needed.

C. Bit-wise Coincident Logic
The bit pattern CQ and the shifted pattern of AQ, A2Q,

are sent to the “BitLogic” block in which the bit-wise
coincident logic is performed. The coincident logic is
essentially a bit-wise AND. The OR logic among the
neighbouring bits in A2Q is included to cover the boundaries.

The detailed logic is P[k]=CQ[k]& (A2Q[k] + A2Q[k-1]),
where k is the bit index.

Any non-zero bit in the resulting bit pattern P indicates a
found triplet. The location of this bit represents the
coordinate of the Plane_C hit belonging to the triplet. The
coordinate of the Plane_A hit can be derived from this
location and the distance of shift.

D. Priority Sequence Encoder
The locations of the non-zero bits are encoded in the

“Priority Sequence Encoder” block which can accommodate
situations with more than one triplet. When there is only one
non-zero hit in the bit pattern P, the encoder outputs the
location of the bit. If there are two or more non-zero bits, the
encoder will insert a wait signal to halt earlier pipeline stages,
allowing the locations of all the non-zero bits to be reported
sequentially.

This block is also implemented as a pipeline. Although it
takes 6-clock cycles to encode the non-zero bit(s) in P, the
block accepts one P pattern each clock cycle, as long as the
wait signal is not inserted.

IV. TEST DESIGNS AND SILICON RESOURCE
USAGE

We have test compiled the Tiny Triplet Finder with N=64
and N=128 bins in an Altera EP1C4 Cyclone device [7].

The full simulation of the Tiny Triplet Finder is shown in
Fig. 4. The simulation uses hit coordinates given in Fig. 1 as
an example. The coordinates for Plane_B are multiplied by 2
to obtain the shift distance. All 4 real triplets in this example
are found plus a fake one which also satisfies the triplet
condition KA + KC = KB and is represented by the dashed
line in Fig. 1 with hits (27, 15, 3).

Figure 4: Full Simulation of the Tiny Triplet Finder.

The outputs of the Priority Sequence Encoder, KA, KB,
and KC, are the bin numbers where the original hit data are
stored in the Hash Sorters (or FIFO for Plane_B hits). These
numbers are used as addresses to read out the hit data in the
corresponding bins to send to later stages for further
processing.

In case there is more than one hit stored in a bin, the Hash
Sorter will output all the hits in the bin so that later stages can
make better choice. In this case, the pipeline in earlier stages
will be halted, allowing multiple hits to be read out.

Another interesting point shown in this example is that we
have found a triplet (5,8,3) corresponding to the input (4,8,3).
One of the input coordinates is off by 1 bin due to a boundary
effect and/or a round-off error. Our bit-wise coincident logic
covers this kind of difference. To trace back the original hits
in the Plane_A at bin 4, the hash sorter will check both bin
KA and KA-1, i.e., both bin 5 and bin 4 in this example.

The compilation results are shown in Table 1 for all
functional blocks shown within the dashed box in Fig. 3. As
we can see, the Tiny Triplet Finder can easily be
accommodated in currently available middle-sized FPGA’s.

Table 1: Silicon Usage of Triplet Finder Implementations

Devices:
Price: (04/2004)

EP1C4
$35.90

EP2A40
$1200

Logic Cells
(4000)

Logic
Cells

(30,855)

Embedded
System Blocks

(160)
TTF (64 bits) 944 (23%) 944 (3%) -
TTF (128 bits) 1681 (42%) 1681 (5%) -

CAM using ESB
(64 bits)

Not fit 128 (80%)

Hough Trans.
(64 bits)

Not fit 16384
(53%)

The resource usages for two other typical implementations
are also shown for comparison. The first one uses Content
Addressable Memories (CAM) which can be implemented
fairly efficiently with Altera Embedded System Blocks
(ESB's) [8]. For this case, we calculated silicon usage
assuming 64 X 64 =4096 roads without considering boundary
effects and including other supporting logic.

The second other implementation uses the Hough
transform scheme [6]. The number shown includes only the
2-D histogram, assuming each bin can be implemented with 4
logic cells. Decoder and other supporting logic are not
included.

Since these two other implementations do not fit in the
EP1C4 device, we picked an EP2A40 APEX II device [8],
which is 7 times larger, to accommodate them.

Furthermore, as the bin number increases from 64 to 128,
the logic cell usage of the Tiny Triplet Finder will increase
only by about a factor of 2 while that for the other two
implementations will increase by a factor of 4.

V. CONFIGURATIONS WITH UNEQUALLY SPACED
DETECTOR PLANES

The Tiny Triplet Finder may also be used in triplet finding
problems with non-uniformly spaced detector planes.

Let the distance between the planes A and B be 1d and

that between B and C be 2d , as shown in Fig. 5.

Figure 5: Detector configuration with unequally spaced planes.

For a given track segment, the following relationship
exists:

BCA uu
dd

du
dd

d
2

22

21

1

21

2 =
+

+
+

where Au , Bu and Cu are the hit coordinates on planes A, B
and C. We can define:

BBCCAA uKu
dd

dKu
dd

dK 2;
2

;
2

21

1

21

2 =
+

=
+

=

where AK , CK and BK are integers after eliminating
fractional bits. We then have:

BCA KKK =+

This shows that the Tiny Triplet Finder can be applied for
arbitrarily spaced detector planes. The units of bins for plane
A and C are as defined above. The relative shift between the
two bit patterns is still BK .

VI. CONFIGURATIONS WITH MORE THAN THREE
PLANES

The method used in the Tiny Triplet Finder is not
restricted to three planes. By introducing more planes,
additional constraints are added. The additional hit
information can be also used to handle situations with missing
hits due to detector inefficiencies.

Consider a 5-plane example as shown in Fig. 6.

Figure 6: Detector configuration with unequally spaced planes.

We assume the planes in this example are uniformly
spaced for simplicity. For arbitrary spacing, the method
shown in the previous section can be applied.

For a given track segment, the following constraints can
be written:

BCA uuu 2+−=

BCAA uuu
2
3

2
1

+−=

BCCC uuu
2
1

2
1

+−=−

Again, the hit coordinates on planes AA, A, B, C and CC in
the non-bend view are connected through these constraints.

The equations above provide the bin size and shift
distance (relative to plane C, an arbitrary choice) for each
plane. The bin sizes for planes AA and CC are twice those
for A and C. The bin order for plane C and CC are reversed
relative to AA and A. The shift distances for plane A, AA
and CC are 2, 3/2 and 1/2 of the hit coordinate on B.

The bit-wise coincident logic can be implemented in the
following 3 different ways:

• The highest level of constraint is a 4-fold bit-wise
AND. This logic is best on eliminating fake triplets.
However, the required efficiency of the detector must
be very high.

• Another possible logic is 3-out-of-4 bit-wise
majority. This allows 1 out of the 4 hits to be
missing due to detector inefficiency. Two out of
three constraints are used resulting in a lower fake
triplet rate than the 3-plane situation.

• Using 2-out-of-4 bit-wise majority logic will produce
as many fake triplets as in the 3-plane situation
(perhaps even more). However, this allows 2 out of
4 hits missing, resulting in the highest triplet finding
efficiency.

In practice, the second choice is a reasonable one since it
maintains a good balance between the ability to deal with
inefficiencies and the ability to reject fake triplets.

VII. DISCUSSIONS
We have described an FPGA implementation of the Tiny

Triplet Finder. Since the Tiny Triplet Finder algorithm uses
no special logic operations other than shift and bit-wise
AND/OR, it is also suitable for software implementation. In
most CPU or DSP processors, the execution time will be
reduced from)(3nO to)(nO . In addition to track segment
finding, the TTF algorithm may also be used in hit recognition
problems in wire chambers, time of flight counters, and
GEM/MICROMEGAS detectors. We will discuss these
applications in separate documents.

VIII. REFERENCES
[1] Kulyavtsev et al., BTeV proposal, Fermilab, May 2000,

BTeV-doc-66.
[2] G. Y. Drobychev et al., Update to BTeV proposal,

Fermilab, March 2002, BTeV-doc-316.
[3] M. Wang, BTeV Level 1 Vertex Trigger Algorithm,

BTeV-doc-1179.
[4] E.E. Gottschalk, BTeV detached vertex trigger, Nucl.

Instrum. Meth. A 473 (2001) 167.
[5] J. Wu, M. Wang, E. Gottschalk, G. Cancelo and V.

Pavlicek [for BTeV collaboration], “Hash sorter:
Firmware implementation and an application for the
Fermilab BTeV level 1 trigger system,” FERMILAB-
CONF-03-357-E available:
{http://www.slac.stanford.edu/spires/find/hep/www?r=fer
milab-conf-03-357-e} Presented at IEEE 2003 Nuclear
Science Symposium (NSS) and Medical Imaging
Conference (MIC), Portland, Oregon, 19-24 Oct 2003}

[6] R. Fruhwirth et al., “Data Analysis Techniques for High-
Energy Physics”, 2nd ed., Cambridge, 2000

[7] Altera Corporation, “Cyclone FPGA Family Data Sheet”,
(2003)

[8] Altera Corporation, “APEX II Programmable Logic
Device Family Data Sheet”, (2002)

